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EHR data provenance

• Data provenance refers to the process by which data come to be
captured in the EHR
• Unlike data from a designed study, the data capture process in

EHR-based studies is entirely outside the control (and often
awareness) of the researcher
• Challenging aspects of data provenance for research include

I Availability, type, and amount of data varies across patients
I Clinical practices including frequency of visits, data that are recorded,

tests that are ordered, etc may vary across clinics
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EHR data provenance
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Phenotype estimation using EHR data

• Phenotype = collection of characteristics describing a patient
• Motivated by lack of gold-standard for many patient characteristics of

interest
• Need ways to deduce characteristics that are not explicitly recorded
• The complexities of data provenance create challenges for

phenotyping
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Rule-based Phenotyping

• Most of the existing literature on EHR-derived phenotyping relies on
“clinical decision rules”
• Algorithm based on clinical knowledge of the phenotype and coding

practices
I Simple or complex
I Including one data element or many
I May include a time component

• May incorporate structured data as well as unstructured data, often
via NLP

Rebecca Hubbard (DBEI – UPENN) EHR Methods April 26, 2019 6 / 39



Example: Rule-based Phenotyping for T2DM
Variable type Examples Format
Diabetes diagnosis

• T2DM

• T1DM

• DM NOS

ICD-9/10 codes

Medications
• Insulin

• Metformin

Prescribing data

Co-morbidities
• PCOS

• Obesity

ICD-9/10 codes

Biomarkers
• Glucose

• HbA1c

Procedure codes for
test administration;
numerical results
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Example: eMERGE T2DM Rule

Kho et al. J Am Med Inform Assoc 2012;19:212-218
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MNAR missingness mechanism

• Missingness likely depends
on underlying T2DM status
directly
• Risk factors may influence

missingness through T2DM
(symptoms) or directly
(screening)
• Patients’ interaction with the

healthcare system also
affects observation process
• Example of patient-driven

observation
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Missingness and rule-based phenotypes

• Typically, rule-based phenotypes have used a naive approach to
missingness
• Absence of evidence = evidence of absence
• For conditions where all high risk individuals are evaluated for disease

this may be reasonable
• However, it ignores the fact that EHR represent a combination of

biological information and information about interaction with health
care system
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A latent phenotype model

Unobserved true phenotype Yi ∼ Bernoulli(θi)

Observable features (e.g., codes, medica-
tions, biomarkers)

Xi ∼ D(µX
ik |Yi = k)

Missingness in features Ri ∼ D(µR
ik |Yi = k)

Priors for model parameters π(θi), π(µX
ik), etc

L(θi ,µ
X
i ,µ

R
i ) =

∑
k=0,1

P(Yi = k |θi)
J∏

j=1

f (Rij |Yi = k ,µR
ik)f (Xij |Yi = k ,µX

ik)
Rij

Posterior distribution for θi |Xi ,Ri can be used as a measure of the
phenotype

Hubbard et al. 2019. A Bayesian latent class approach for EHR-based phenotyping.

Statistics in Medicine. doi:10.1002/sim.7953.
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Why Bayesian estimation?

• Bayesian framework combines strengths of formal statistical
prediction and clinical knowledge-base

I Data can be used to identify patterns of data elements indicative of
disease

I Likelihood incorporates all data elements available for an individual

• Expert opinion on predictive performance of biomarkers incorporated
into prior distributions
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Application to PEDSnet data

• We applied this approach to an EHR-derived data set from two
PEDSnet sites
• Children age 10-18 years, at least two clinical encounters between

2001-2017 separated by at least 3 years
• On at least one occasion BMI z-score in excess of the 95th percentile

for age and sex
• Cohort consisted of 32,553 children from site A and 24,342 children

from site B
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T2DM Predictors in PEDSnet cohort

Site A Site B
N = 32,553 N = 24,342

Mean (SD) Mean (SD)
Random Glucose 95.0 (35.0) 101.8 (44.5)
Hemoglobin A1c 5.8 (1.2) 6.0 (1.4)

N (%) N (%)
Endocrinologist 2,411 (7.4) 4,617 (19.0)
Metformin 357 (1.1) 1,460 (6.0)
Insulin 360 (1.1) 691 (2.8)
T1D Codes 408 (1.3) 787 (3.2)
T2D Codes 164 (0.5) 365 (1.5)
Missing glucose 6,382 (19.6) 8,204 (33.7)
Missing HbA1c 29,057 (89.3) 18,630 (76.5)

eMERGE T2DM 111 (0.3) 207 (0.9)
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Posterior means and CIs for model parameters

Site A Site B
Posterior 95% CI Posterior 95% CI

Mean Mean

Mean shift in glucose 135.24 (131.21, 139.25) 141.24 (138.87, 143.59)
T2DM code sensitivity 0.20 (0.16, 0.24) 0.26 (0.23, 0.29)
T2DM code specificity 1.00 (1.00, 1.00) 0.99 (0.99, 0.99)
Endocrinologist code sensitivity 0.95 (0.93, 0.97) 0.98 (0.97, 0.99)
Endocrinologist code specificity 0.94 (0.94, 0.94) 0.84 (0.83, 0.84)
Metformin code sensitivity 0.29 (0.25, 0.33) 0.33 (0.30, 0.36)
Metformin code specificity 0.99 (0.99, 0.99) 0.95 (0.95, 0.95)
OR missing glucose 0.38 (0.31, 0.46) 0.20 (0.17, 0.23)
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Error in EHR derived phenotypes

• EHRs provide the opportunity to identify novel risk factors
• However, EHR-derived phenotypes may exhibit exposure-dependent

differences in data quality
I More data available for patients with high intensity of contact with

healthcare system (higher sensitivity among exposed)
I High intensity patient also have more opportunity for erroneous codes

to appear in charts (lower specificity)
• Example: Second breast cancer event (SBCE) in women with a

history of breast cancer
I Algorithm identifies SBCE with Se = 88%, Sp = 99%
I Can algorithm be used to identify date of SBCE?
I What are implications for estimation and hypothesis testing if

imperfectly ascertained outcomes are used?
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Second breast cancer events

• COMBO study developed algorithm to identify SBCEs using a
combination of cancer registry and EHR data
• Validated against manual chart review
• We explored how well dates assigned based on this algorithm agreed

with gold-standard
• 407 chart-reviewed SBCEs, 358 (88%) identified by algorithm
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High specificity algorithm

JNCI | Articles 937jnci.oxfordjournals.orgjnci.oxfordjournals.org   JNCI | Article 7

breast cancer before 1996 and after 2003 compared with women 
diagnosed during 1996  –  2003 (data not shown). The highly sensitive 
algorithms ( Figures 1  and  3 ) had higher rates of misclassifi cation, 
especially false positives, for persons whose initial cancer was more 
advanced (eg, larger primary tumor size) (data not shown). The 
accuracy of recurrence-specifi c algorithms was similar to, but not 
as high as, the algorithms for all second breast cancer events ( Table 2  
and   Supplementary   Figures   2     –     7   , available online ).  

   Discussion  
 We report algorithms with high sensitivity and specificity for iden-
tifying second breast cancer events using administrative health 
plan data. We created several algorithms for researchers to select 
from based on the relative importance of sensitivity, specificity, 
and PPV in future studies. These administrative data algorithms 
have the potential to increase efficiency and reduce costs of epide-
miological and health services research on breast cancer treatment 
effectiveness and outcomes. Several previous studies have success-
fully identified cancer relapses using administrative claims data 
( 8  –  11 ). However, only one study ( 11 ) focused specifically on breast 
cancer patients. The study ( 11 ) of 45 node-positive breast cancer 
patients aged at least 65 years evaluated a simple and intuitive 
algorithm for cancer relapse or death based on the presence of 
 ICD-9-CM  codes for diagnosis of a secondary malignancy and an 
indicator variable for death. The algorithm had 100% sensitivity 
(95% CI = 81% to 100%) and 97% specificity (95% CI = 83% to 

100%) at the 5-year censoring point, and 83% sensitivity (95% 
CI = 36% to 100%) and 95% specificity (95% CI = 83% to 100%) 
at the 2-year censoring point ( 11 ). This prior study ( 11 ) illustrated 
the feasibility of developing algorithms for relapse or death but 
was small, limited to women at least age 65 years, and conducted 
only among women with positive lymph nodes. For our primary 
analysis, we chose to develop algorithms for the combined out-
comes of recurrence and second primary breast cancer based on 
three factors: 1) algorithms for individual outcomes are unlikely to 
succeed if an algorithm for combined outcomes does not perform 
well; 2) definitions of recurrences and second primaries differ 
across studies ( 12  –  15 ); and 3) studies that investigate disease-free 
or overall survival might not want to distinguish between recurrent 
and second primary breast cancers ( 16  –  18 ). 

 This study fulfi lls an important need for rigorous validation 
against gold standard data and detailed reporting of algorithms 
based on health administrative data ( 23 ). An innovative feature and 
major strength of this study is that we present a menu of algorithms 
that allows researchers to select the most useful algorithm based on 
the available data and their priority for sensitivity, specifi city, or 
PPV ( 24 ). Our results suggest that high sensitivity, specifi city, 
and PPV can be achieved but require a degree of trade-off:  The 
 algorithm with nearly perfect sensitivity had somewhat compro-
mised specifi city and vice versa .  Using CART analysis, we devel-
oped algorithms with different desired properties by specifying a 
range of penalties for misclassifying a true event as a nonevent and 
vice versa .  

  

Two visits with a code for a secondary malignant neoplasm 
within 60 days and occurring >365 days after the primary breast 

cancer               
(n = 1892)

A second breast cancer 
record in the SEER 

registry        
(n = 1711)

No

Second breast 
cancer event

(n = 69)
93% correctly 

classified 

Yes

No
A mastectomy >180 

days after the primary 
breast cancer     
(n = 1642)

YesNo Yes

No second breast 
cancer event

(n = 28)
75% correctly

classified 

Second breast 
cancer event

(n = 153)
90% correctly 

classified 

A non-breast cancer record in 
the SEER registry after the 

primary breast cancer
(n = 181)

No second breast 
cancer event
(n = 1612)

99% correctly 
classified

Surgical procedure for 
the primary breast cancer 

(SEER registry)
(n = 30)

No second breast 
cancer event

(n = 11)                                                       
91% correctly 

classified

Second breast 
cancer event

(n = 19)                                                       
84% correctly 

classified 

No Yes

Mastectomy Lumpectomy

Accuracy of identifying a second breast cancer event:
Sensitivity = 89%
Specificity = 99%
Positive predictive value = 90% 
Negative predictive value = 98%  

  Figure 2  .    High specifi city and high positive 
predictive value algorithm for a second 
breast cancer event. “Yes” indicates that 
the criterion was met. “No” indicates 
that the criterion was not met.     
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Error in date assignment for SBCE

• 82% of events were within 60 days of algorithm-based date
• Is this good enough?
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Simulation study for imperfect time to event outcomes

• Conducted a simulation study with event and error rates for dates
motivated by SBCE study
• Estimated HRs using imperfectly assigned SBCE dates and

compared to true HRs used to simulate data

Sensitivity/specificity Error in date

Non-differential Non-differential

Non-differential Later event detection in exposed

Non-differential Earlier event detection and less
variability

Non-differential Later event detection and more
variability

Higher sensitivity/lower specificity Non-differential

Higher sensitivity/lower specificity Earlier event detection and less
variability
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Simulation study for imperfect time to event outcomes

Sensitivity/specificity Error in date % Bias
in HR

Non-differential Non-differential -2.2

Non-differential Later event detection in exposed 0.4

Non-differential Earlier event detection and less
variability

-0.9

Non-differential Later event detection and more
variability

-3.8

Higher sensitivity/lower
specificity

Non-differential 6.5

Higher sensitivity/lower
specificity

Earlier event detection and less
variability

8.1

Chubak J et al. 2017. An electronic health record-based algorithm to ascertain the date of second
breast cancer events using automated data. Med Care. 55(12):e81-e87.
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Type I error due to phenotyping error

• In addition to bias, inflated type I error rates are of high importance as
they indicate the frequency of spuriously identified risk factors
• Using COMBO data on EHR-derived SBCE and patient and cancer

characteristics, we simulated an exposure variable (E) that was
independent of the outcome
• However, the sensitivity and specificity of the surrogate outcome (Y ∗)

varied according to exposure status.
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Type I error due to phenotyping error

• We then analyzed the association between Y ∗ and E using logistic
regression
• We varied the difference in sensitivity and specificity between

exposed and unexposed across a range of values, with sensitivity in
the unexposed fixed at 0.85 and specificity fixed at 0.9.
• Each scenario was repeated 1,000 times
• Type I error was computed as the proportion of hypothesis tests

rejected at the α = 0.05 level across the 1,000 simulations
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Type I error results

• Holding specificity equal in exposed
and unexposed individuals, when
sensitivity was 10% higher in
exposed individuals compared to
unexposed (i.e., 0.95 vs 0.85) the
type I error rate increased to 14%.
• Similarly, holding sensitivity equal

between the two groups, a 10%
decrease in specificity between
exposed and unexposed individuals
(i.e., 0.80 vs 0.90) resulted in a type
I error rate of 33%.

Chen Y et al. 2018. Inflation of type I error rates due to differential misclassification in EHR-derived
outcomes: Empirical illustration using breast cancer recurrence. Pharmacoepidemiol Drug Safety.
doi:10.1002/pds.4680.
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What can we do about phenotyping error?

• We have seen that phenotyping error can lead to substantial bias and
inflated type I error
• Numerous statistical methods have been developed to account for

misclassified outcomes
• Despite this, the vast majority of EHR-based analyses in the applied

literature use standard methods with no correction for
misclassification
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An approach for predicted probabilities

• Increasingly, phenotyping is using statistical or machine learning
approaches that provide predicted probabilities of phenotype, p̂
• More sophisticated phenotyping allows for covariate-specific

phenotypes
• Sinnott et al. 2014 developed a bias correction approach for analyses

using these predicted probabilities as outcomes
• Suppose we wish to estimate the association between a phenotype,

Y , and exposure, Z adjusting for confounders W

g(P(Y = 1|Z ,W )) = α+ βZ + γW .

• Let f (p̂) = (p̂ − µ0)/(µ1 − µ0), where µk = E(p̂|Y = k)
• Sinnott et al. showed that regressing f (p̂) on Z and W provides

unbiased estimates for regression coefficients.
Sinnott et al. 2014. Improving the power of genetic association tests with imperfect phenotype derived
from electronic medical records. Human Genetics. 133:1369-82.
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A simple bias correction for risk differences

• In the context of logistic regression, this approach requires
specialized software.
• In the context of risk difference regression, however, this approach

gives rise to a very simple bias correcion

E(f (p̂)|Z ,W ) = α+ βZ + γW

E [(p̂ − µ0)/(µ1 − µ0)|Z ,W ] = α+ βZ + γW

E [p̂|Z ,W ] = α∗ + (µ1 − µ0)(βZ + γW )

E [p̂|Z ,W ] = α∗ + β∗Z + γ∗W

• Therefore, β̂ = β̂∗

µ1−µ0
is unbiased for β
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One additional complication

• Unfortunately, in the EHR context µ0 and µ1 will only be available in
data sets with validation data
• In the data set initially used to develop the phenotype this will be

straightforward to calculate by taking the mean of p̂ among cases and
controls
• In data sets without validation data we typically have access to

published validation results, typically including a proposed cutpoint,
p∗, along with sensitivity and specificity for the dichotomized
phenotype
• Using this information we can obtain estimates µ̂0 and µ̂1
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Estimating µ0 without validation data
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predicted phenotype probability
p*µ0

Rebecca Hubbard (DBEI – UPENN) EHR Methods April 26, 2019 31 / 39



Simulation study design

• Compared
1. Gold standard true phenotype
2. Dichotomized phenotype based on predicted probability
3. Bias correction using estimated µ̂0 and µ̂1

4. Bias correction using true µ0 and µ1

• Varying: AUC of p̂, strength of effect (β), prevalence of Y
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Bias: Prevalence = 0.5
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Bias: Prevalence = 0.1
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Conclusions

• Consideration of data provenance is critical to appropriate
development and analysis of phenotypes
• Efforts should be made to improve phenotypes

I Consider routine practice for how patients are treated and how
frequently

I Don’t assume phenotypes are transportable across clinical sites
I Incorporate information on intensity of interaction with healthcare

system

• Phenotyping error can result in substantial bias and type I error
• A variety of approaches exist to account for phenotyping error or

conduct sensitivity analyses to determine if results are robust
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