Build your Data Skills:
Introduction to SQL

Kaeli Samson, MA, MPH

Department of Biostatistics

College of Public Health

University of Nebraska Medical Center

June 25t 2019

University of Nebraska

Medical Center

i (8
. Iq!‘:" !

Hadley Wickham, PhD
Chief Scientist, RStudio

“February 1416 2019

Top 3 SKkills:

1. SQL
2. Github
3. Marketing Y

Overview

e Brief Intro to SQL

e Terminology

o General syntax/structure
* Description of Dataset

e Basic Queries
 Creating New Variables
e Joins

e Helpful SQL Code

Brief Introduction to SQL

SQL = Structured Query Language

Typically associated with use In
database management, but also
great for data management,
generally!

Brief Background in
Database Design

Student Course Course Instructor
Contact Description Contact

Josie

Ken
Brooke
Addison
Cole
Samantha
Josh
Josie

Ken

555-1234
555-9845
555-7878
555-1111
555-6127
555-1534
555-5463
555-1234
555-9845

Calculus I
Calculus I
Calculus I
Calculus I
Calculus I
Calculus I
Calculus I
GIS |

GIS |

Integration
Integration
Integration
Integration
Integration
Integration
Integration
Mapping

Mapping

Julie
Joe
Julie
Julie
Julie
Joe
Joe
Paul

Paul

555-8888
555-2222
555-8888
555-8888
555-8888
555-2222
555-2222
555-3333
555-3333

Y

Brief Background in
Database Design

Student Student Instructor Instructor
Name Contact Name Contact

1 Josie 555-1234 Julie 555-8888
2 Ken 555-9845 2 Joe 555-2222
3 Brooke 555-7878 3 Paul 555-3333
4 Addison 555-1111

Course ID Course Course
> Cole 555-6127 Name Description
6 Samantha 555-1534 A Calculus Il Integration

Enroliment ID | StudentID | CourseID | Instructor ID
1 1 A 1
2 2 A 2 w

Brief Introduction to SQL

SQL can be used to “query” data,
but can do more, such as:

 Create new variables
e Join tables together

* [nsert observations
 Edit observations
 Delete observations

Terminology

University of Nebraska
Medical Center

S-Q-L vs. Sequel?

Terminology
SAS SQL

Dataset Table
Observation Row
Variable Column

Note: Since this presentation uses SAS to run SQL, SAS terms will be
used interchangeably with SQL terms, although | acknowledge in w
some fields of study these terms are not considered synonymous.

D

10

General Structure and
Syntax of SQL

University of Nebraska
Medical Center

Common SQL Clauses

SELECT Choose variables/columns for your table

F RO M Indicate source(s) of data (i.e. datasets)

WH E RE Subsetting criteria for rows

GROUP BY Grouping desired for summary variables

ORDER BY sort order for rows

‘ Clauses must be in this specific order! \{¥

12

Common SQL Clauses

CREATE TABLE
SELECT SELECT
FROM FROM

WHERE WHERE
GROUP BY GROUP BY
ORDER BY ORDER BY

Prints query result Saves query result (i.e.
(.e. table) to output table) as SAS dataset

D

SQL in SAS
PROC SQL :
/ SELECT
FROM
Specific
tocac WHERE

GROUP BY
ORDER BY;

QUIT ;

D

14

SQL in SAS

Note: While SQL is an ANSI
standard language, each software
that runs it, including SAS, may
have their own options that are
specific to that software. As such,
some of the code in this
presentation may not work

outside SAS, but the general
principles will still apply. Y

15

Structure of Example
Dataset

University of Nebraska
Medical Center

Data: sashelp.us data

State ldentifiers (x3)
e Name
e Abbreviation

e FIPS Code
State Information

 Division

e Population

e Number of representatives
e Change in number of seats

sashelp.us data (abbr.)

Obs

D 2w | = o | n | | L R

O e " (R S [A e §
L=r B B N e N =

STATENAME
Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Flonda
Georgia
Hawaii

|daho

llinois
Indiana

lowa

STATE
1

[TR ¥ T = = T« B & » T S %

"
12
13
15
16
17
18
13

STATECODE DIVISION

AL

AK
AZ

AR
CA
co
cT

DE
DC
FL

GA
HI

East South Central
Pacific

Mountain

West South Central
Pacific

Mountain

Mew England
South Atlantic
South Atlantic
South Atlantic
South Atlantic
Pacific

Maountain

East Morth Central
East Morth Central
West Morth Central

POPULATION_2010 | REP5_2010 SEAT_CHANGE_2010

4779736
710,231
6,392,017
2,915,918
37,253,956
5,029,196
3.574.097
897.934
601,723
18,801,310
9.687.653
1,360,301
1.567.582
12,830,632
6,483,802
3,046,355

7
.1
9

53

18

New Dataset

data us_pop;
set sashelp.us data
(rename=(population_2010=pop 2010));
keep statename state division pop 2010;

run,
us_pop

Obs STATENAME POPULATION 2010 STATE DIVISION
1 Alabama 4779736 1 East South Central
2 | Alaska 710231 2 | Pacific
3 Anzona 6,392,017 4 Mountain
4 | Arkansas 2.915 918 5 | West South Central
5 California 37,253,956 & Pacific
6 Colorado 5.029.196 8 Mountain
{ Connecticut 3,574,097 9 MNew England w

19

Basic Queries

University of Nebraska
Medical Center

Basic Structure of SQL Code

Printing all variables and observations in
a dataset

proc sqgl;
select varl, var2, var3, var4
sqQL ‘[from dataset;
quit;

21

Basic Structure of SQL Code

Printing all variables and observations in a

dataset
dataset

Traditional SAS Code: /

proc print data=us pop;

var statename pop 2010 state division;
\ J

run; i
variables
variables
proc sql;, A

1

select statename, pop 2010, state, division
from us_ pop;

quit; N
‘ dataset w

Basic Structure of SQL Code

Printing all variables and observations in a
dataset

Proc Print Proc SQL

Obs | STATENAME pop_2010 | STATE | DIVISION Name of State or Region | 2010 Population State Fips Code | US Divisions

1| Alabama 4779736 1 | East South Central Alabama 4 779.736 1 East South Central
2 | Alaska 710,231 2 Pacific Alaska 710,231 2 Pacific

3 | Arizona 6,392 017 4 Mountain Arizona 6.392.017 4 Mountain

4 | Arkansas 2.915.918 5 West South Central Arkansas 2,915,918 5 West South Central
5 | California 37,253,956 6 Pacific California 37,253,956 6 Pacific

6 Colorado £.029.196 8 Mountain Colorado 5,029,196 3 | Mountain

T | Connecticut 3.574.097 9 New England Connecticut 3,574,097 9 Mew England

8 Delaware 897 934 10 | South Atlantic Delaware 897.934 10 | South Atlantic

9 | District of Columbia 601.723 11 | South Atlantic District of Columbia 601,723 11 | South Atlantic
10 | Florida 18,801,310 12 | South Atlantic Florida 18,801,310 12 | South Atlantic
11 | Georgia 9.687.653 13 | South Atlantic Georgia 9,687,653 13 South Atlantic
12 | Hawaii 1,360,301 15 | Pacific Hawaii 1,360,301 15 Pacific

23

Basic Structure of SQL Code

Printing all variables and observations in
a dataset

select all variables

proc sql; ‘/////’/’

select *
from dataset;
quit;

24

Basic Structure of SQL Code

Printing all observations in a dataset

Traditional SAS Code:
proc print data=us_pop;
run;

proc sqgl;
select *
from us_pop;
quit;

25

Basic Structure of SQL Code

Printing all observations in a dataset

Name of State or Region 2010 _Population | State Fips Code

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii
Idaho
lllinaois
Indiana

lowa

4,779,736
710,231
6,392,017
2,915 918
37,253,956
5,029,196
3,574,097
897,934
601,723
18,801,310
9,687,653
1,360,301
1,567,582
12,830,632
6,483,802
3,046,355

US Divisions
East South Central
Pacific

Mountain

West South Central
Pacific

Mountain

Mew England
South Atlantic
South Atlantic
South Atlantic
South Atlantic
Pacific

Mountain

East Morth Central

East Morth Central
West Morth Central w

26

Basic Structure of SQL Code

Printing unique observations in a dataset

proc sqgl;
select division
from us_pop;
quit;
only select unique observations

proc sqgl; ,/////

select distinct division
from us_pop;
quit;

27

Basic Structure of SQL Code

Printing unique observations in a dataset

proc sql;
select division
from us_pop;

proc sql;
select distinct division
from us_pop;

quit;

US Divisions

East South Central

quit;

US Divisions

East Morth Central

Pacific East South Central
Mountain Middle Atlantic
West South Central Mountain

Pacific Mew England
Mountain Pacific

Mew England South Atlantic

South Atlantic
South Atlantic
South Atlantic
South Atlantic

West Morth Central

West South Central w

28

Basic Structure of SQL Code

Printing a subset of observations

proc sql;
select *
from dataset
where var in (“A”, “B”, “C”);

quit;'\\

restrict observations
with where clause

29

Basic Structure of SQL Code

Printing a subset of observations

Traditional SAS Code:
proc print data=us_pop;
where division in ("West North Central', "Mountain');
run;

proc sql;

select *

from us_pop

where division in ("West North Central', "Mountain');
quit;

Y

30

Basic Structure of SQL Code

Printing a subset of observations

Name of State or Region 2010 Population | State Fips Code | US Divisions

Arizona 6,392 017 4 | Mountain
Colorado 5,029,196 g Mountain
Idaho 1,667 582 16 | Mountain
lowa 3,046,355 19 West Morth Central
Kansas 2,853,118 20 | West Morth Central
Minnesota 5,303,925 27 West Morth Central
Missouri 5,986,927 29 | West Morth Central
Maontana 089,415 30 | Mountain
Mebraska 1,826,341 3 | West Morth Central
Mevada 2,700,551 32 | Mountain
Mew Mexico 2,059 179 35 | Mountain
Morth Dakota 672,591 38 West Morth Central
South Dakota 814,180 46 | West Morth Central
Utah 2,763,885 49 ' Mountain

Whyoming 563,626 56 | Mountain w

Basic Structure of SQL Code

Other examples of where clause in SQL

proc sql;
select *
from us_pop
where[pop_2010 between 0 and 1000000};

quit;

proc sql;
select *
from us_pop
where|0 le pop 2010 le 1000OOO|and division = "Mountain';

quit;

Y

32

Basic Structure of SQL Code

Other examples of where clause in SQL

where pop_ 2010 between O and 1000000;

Name of State or Region | 2010 _Population = State Fips Code

Alaska 710,231
Delaware 8487.954
District of Columbia 601,723
Maontana 989415
Morth Dakota 672 591
South Dakota 814 180
Vermont 625741
Whyoming 563,626

2
10
1
30
38
46
50
b6

US Divisions
Pacific

South Atlantic
South Atlantic
Mountain

Woest Maorth Central
West Morth Central
Mew England

Mountain

where O le pop 2010 le 1000000 and division = ""Mountain'';

Name of State or Region | 2010_Population | State Fips Code | US Divisions

Maontana 989 415
Wyoming 563,626

30 | Mountain

56 | Mountain w

33

Basic Structure of SQL Code

Sort observations In a dataset

proc sql;
select *
from dataset
order by var;

quit;
sort output using
proc sql; ‘order by’ clause
select *
from data

order by varl, var2 desc;

quit; w

34

Basic Structure of SQL Code

Sort observations in a dataset

Traditional SAS Code:

proc sort data=us_ pop;
by division descending population 2010;
run;

proc print data=us_pop;
run;

proc sql;
select *
from us_pop
order by division, population 2010 desc;

quit; w

Basic Structure of SQL Code

Sort observations in a dataset

Name of State or Region | 2010 _Population 5tate Fips Code

Minois

Ohio
Michigan
Indiana
Wisconsin
Tennessee
Alabama
Kentucky
Mississippi
Mew York

Pennsylvania

Mew Jersey
Arizana
Colorado
Utah

Mevada

12,830,632
11,536,504
9,883,640
6,483,802
5,686,986
6,346,105
4,779,736
4,339,367
2,967,297
19,378,102
12,702,379
8,791,894
6,392,017
5,029,196
2,763,885
2,700,551

17
39
26
18
b4
47

1
21
28
36
42
34

4

B
49
32

US Divisions
East Morth Central
East Morth Central
East Maorth Central
East North Central
East Maorth Central
East South Central
East South Central
East South Central
East South Central
Middle Atlantic
Middle Atlantic
Middle Atlantic
Mountain

Mauntain

Mountain
Mauntain

36

Creating New
Variables

University of Nebraska
Medical Center

Creating New Variables

Creating new variables

new new
variable variable

definition name

proc sql; (k \ l
select statename, pop 2010, pop_ 2010/1000000 as new_pop
from us_pop;

quit; T

(not optional)

Y

38

Creating New Variables

Creating new variables

proc sql;
select statename, pop 2010, pop_ 2010/1000000 as new_pop
from us_pop;

quit;

Name of State or Region 2010 Population new pop

Alabama 4,773,736 4773736
Alaska 710,231 0.710231
Arizona 6,392,017 6392017
Arkansas 2915916 2915918
California 37,253,956 | 3725396

Colorado 5029196 5029196

Creating New Variables

Cleaning up new variables

new
variable
proc sql;
select format

statename, |
pop_ 2010,

pop 2010/1000000 as new_pop format=8.1 label="Pop in Millions"

from us_pop; \]
quit; |
new
variable

label

Y

40

Creating New Variables

Cleaning up new variables

proc sql;
select
statename,
pop_ 2010,
pop 2010/1000000 as new_pop format=8.1 label="Pop in Millions"
from us_pop;
quit;

Name of State or Region | 2010 _Population Pop in Millions

Alabama 4,779,736 4.8
Alaska 710,231 0.7
Arizona 6,392.017 b4
Arkansas 2,915,918 2.9

California 37,253,956 373
Colorado 5,029,196 5.0 w

Creating New Variables

Summary Variables

new new
variable variable
definition name
proc sql;,] ‘ |

select mean(pop 2010) as mean_pop
from us_ pop;
quit;

42

D

Creating New Variables

Summary Variables

proc sql;
select mean(pop 2010) as mean_pop
from us_ pop;

quit;

The summary mean pop
function is applied —
to the entire data
set (when there is

no group by clause) U

43

6003064

Creating New Variables

Using the count function

proc sqgl;
select count(™)

from us_pop; 2

quit;
proc sqgl;
select count(division)
from us_pop; 52
run;
proc sqgl;
select count(distinct division)
from us_pop; 9

run; ‘tg

44

Creating New Variables

Summary Variables by Group

new new
variable variable
definition name
proc sqgl; l l

select division, mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit; t
Grouping variable: will calculate
summary statistics for each w

D

unique value of this variable
45

Creating New Variables

Summary Variables by Group

proc sqgl;
select division, mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit;

US Divisions div_mean_pop
East Morth Central 9284313
East South Central 4608126
Middle Atlantic 13624125
Mountain 2758181
MNew England 2407478
Pacific 9976020
South Atlantic 6350283
West Morth Central 29293348 w
West South Central 9086551

46

Creating New Variables

Summary Variables by Group

Note: It's important to have your grouping
variable in both your select and your group by
clauses!

proc sqgl;
select division, mean(pop 2010) as div_mean_pop
from us_pop
group by . division;

quit;

Y

Creating New Variables

Summary Variables by Group

This is what happens if you leave the grouping variable out of the
select clause...

div._mean_pop

proc sql;
select mean(pop_2010) as div_mean_pop 9284313
from us_pop 4608126

roup by division;
'g- i 13624125
quit;

2758181
2407478
9976020
b350263

2929348
9086551 w

48

Creating New Variables

Summary Variables by Group

This is what happens if you forget to includes the group by clause:

proc sql;
select division, mean(pop_2010) as div_mean_pop
from us_pop;

qui t , US Divisions div_mean_pop
East South Central 6003064
Pacific 6003064
Mountain 6003064
Woest South Central 6003064
Pacific 6009064
Mountain 6003064
Mew England 6003064
South Atlantic 6003064
South Atlantic 6003064
South Atlantic 6009064 w
South Atlantic 6003064

49

Creating New SAS Datasets

new SAS
dataset name
not

_ l .
proc_sal; : optional
|create table div_stats as

select division, mean(pop _2010) as div_mean_pop

from us_pop
group by division;

quit;
] Log - (Untitled)
351 proc =ql;
352 create table div_stats as
353 zelect division, mean({pop_2010) as div_mean_pop
354 from us_pop
355 group by division;
NOTE: Table WORK.DIV_STATS created, with 9 rows an d 2 columns. w

50

Joins

University of Nebraska

Medical Center

sashelp.us data (abbr.)

Obs

D 2w | = o | n | | L R

O e " (R S [A e §
L=r B B N e N =

STATENAME
Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Flonda
Georgia
Hawaii

|daho

llinois
Indiana

lowa

STATE
1

[TR ¥ T = = T« B & » T S %

"
12
13
15
16
17
18
13

STATECODE DIVISION

AL

AK
AZ

AR
CA
co
cT

DE
DC
FL

GA
HI

East South Central
Pacific

Mountain

West South Central
Pacific

Mountain

Mew England
South Atlantic
South Atlantic
South Atlantic
South Atlantic
Pacific

Maountain

East Morth Central
East Morth Central
West Morth Central

POPULATION_2010 | REP5_2010 SEAT_CHANGE_2010

4779736
710,231
6,392,017
2,915,918
37,253,956
5,029,196
3.574.097
897.934
601,723
18,801,310
9.687.653
1,360,301
1.567.582
12,830,632
6,483,802
3,046,355

7
.1
9

53

52

New Datasets

data us_pop;
set sashelp.us_data
(rename=(population_2010=pop_2010));
keep statename state division pop 2010;
run;

data us_rep;
set sashelp.us_data (keep=
state
statecode
reps 2010);
run;

data us_seatch;
set sashelp.us_data (keep=
statecode
statename
seat _change 2010);
run;

53

New Datasets

Gbﬁl STATEHAMEI POPULATION_2010 § STATE | DIVISION

1| Alabama 4 779,736 1 | East South Central
2 Alaska 710,231 2 | Pacific

3 | Arizona 6,392,017 4 | Maountain

4 | Arkansas 2.915.918 5 | West South Central
5 | Califernia 37,253,956 6 | Pacific

6 | Colorado 5029196 8 | Mountain

T | Connecticut 3,674,097 9 | Mew England

us_rep us_seatch
Obs | REPS_2010 Obs I STATENAME I SEAT CHANGE 2010 M

1 7 1AL 1| Alabama 0 AL
2 1 2 AK 2 | Alaska 0 AK
3] 4 AL 3 | Arizona 1 AL
4 4 5 AR 4 | Arkansas 0 AR
5 53 6 CA 5 | California 0 CA
6 7 8 CO 6 | Colorado 0 co
T g 9 CT T | Connecticut 0 CcT

54

Joins

Basic set up of a join

proc sqgl;
select datasetl.*,
dataset2.*
from datasetl,
dataset2

where datasetl.common var = dataset2.common_var;
quit;

Common variable structure:

data_source.variable_name

When joining tables, it is important to let SQL know which
variables are coming from each dataset, especially when w

variables in different datasets have the same name.
55

Joins

Basic set up of a join

proc sqgl;
select datasetl.*,
dataset2.*
from datasetl,
dataset2

where datasetl.common_var = dataset2.common_var;
quit;
Without the where statement, the output table would be
a Cartesian product join, where every observation in the
first dataset would be joined to the first observation in the
second table, and that would be repeated for each

subsequent observation in the second table, until you ha
a table with 52*52 = 2,704 observations!

S

56

Joins

Use abbreviations for dataset names

proc sqgl;
select datasetl.*,
dataset2.*
from datasetl,
dataset?2

where datasetl.common var = dataset2.common_var;
quit; 4

| equivalent |

oroc sql: { the ‘as’ is optional in

select abbrl._.*,
bbro * the from clause
from datasetl |as abbrl,
dataset2 |as abbr?2

where abbrl.common_var = abbr2.common_var;

quit; w

57

Desired Join

Gbﬁl STATEHAMEI POPULATION_2010 § STATE | DIVISION

1| Alabama 4 779,736 1 | East South Central
2 Alaska 710,231 2 | Pacific

3 | Arizona 6,392,017 4 | Maountain

4 | Arkansas 2.915.918 5 | West South Central
5 | Califernia 37,253,956 6 | Pacific

6 | Colorado 5029196 8 | Mountain

T | Connecticut 3,674,097 9 | Mew England

us_rep
Obs | REPS 2010

1 T 1 AL
2 1 2 AK
3 9 4 AL
4 4 5 AR
3 b3 B | CA
(] 7 g CO w
T b 9 CT

58

Joins

Example of a join — keep all variables

proc sql;
select pop.~*,
rep.>
from uUs _pop as pop,
Us rep as rep
where pop.state = rep.state;
quit;

Note that unlike merges in the data step, there’s w
no need to sort the input datasets prior to a join!

D

59

Joins

Example of a join — keep all variables

proc sqgl;
select pop.*, rep.*
from us _pop as pop, us_rep as rep
where pop.state = rep.state;

quit;
Two-letter
Abbrev.
2010_Number of for State

Name of State or Region | 2010_Population | State Fips Code | US Divisions Representatives | State Fips Code | Name
Alabama 4 779,736 1| East South Central T 1AL
Alaska 710,231 2 Pacific 1 2 AK
Arizona 6.392.017 4 | Mountain 9 4 AL
Arkansas 2,915,918 5 | West South Central 4 EAR
California 37,253,956 6 Pacific 83 6 CA
Colorado 5.029.196 8 | Mountain 7 g Co
Connecticut 3.574.097 9 Mew England 5 §|CT

Delaware 897,934 10 | South Atlantic 1 10 DE

Joins

Save joined tables as SAS dataset

proc sqgl;
create table pop rep as |
select pop.~*,
rep.>
from us _pop as pop,
Us rep as rep
where pop.state = rep.state;

select * } prints the

from pop _rep;

_ new dataset
I quit;

61

Desired Join

Gbﬁl STATENAME I
1| Alabama
Alaska

Arizona

California

2

3

4 | Arkansas
5

6 | Colorado
T

Connecticut

us_pop

POPULATION_2010 § STATE §| DIVISION

4,779,736
710,231
6,392,017
2,915 918
37,253,956
5,029,196
3,574,097

1

w00 m Mmoo = R

us_seatch

East South Central
Pacific

Mountain

West South Central
Pacific

Mountain

Mew England

Obs I STATENAME I SEAT_CHANGE_2010 | STATECODE

1| Alabama
Alaska

Arizona

California

2

3

4 | Arkansas
5

6 | Colorado
T

Connecticut

0
0

1
0
0
0
0

AL
AR
AZ
AR
CA
co
cT

But we only want

the following
variables in the

final joined table:

e Statecode
 Population
e Seat Change

Y

62

We only want the following

J O I n S variables in the final joined table:

e Statecode
proc SC|| - e Population
e Seat Change
select statecode,
pop 2010,
seat_change 2010
from us_pop as pop,
us_seatch as seat
where pop.statename = seat.statename;
quit;

us_pop us_seatch
— —
c.bs pgpumﬂo"_zmg —_— Obs| STATENAME | SEAT_CHANGE_ZDH}

1| Alabama 4,779,736 1 East South Central 1 Alabama 0 AL
2 | Alaska 710,231 2 | Pacific 2| Alaska 0 AK
3 | Arizona 6,392,017 4 | Mountain 3 | Arizona 1 AZ
4 | Arkansas 2,915,918 5 Woest South Central 4 | Arkansas 0 AR
5 | California 37,253,956 6 | Pacific 5 | Califarnia 0 CcA
6 | Colorada 5,029,196 8 Mountain 6 Colorado 0 Cco
T | Connecticut 3.574.097 9 Mew England T | Connecticut 0 cT

Joins

proc sql;
select
from

where
quit;

statecode,

pop 2010,

seat_change 2010

us pop as pop,

us _seatch as seat
pop.statename = seat.statename;

Two-letter

Abbrev.

for State

Name 2010 Population 2010 Seat Change
AL 4,779,736 0
AK 710,231 0
AZ 6,392,017 1
AR 2,915 918 0
CA 37,253,956 0
co 5,029,196 0

64

Desired Join

us_pop Keep:
Obsl STATENAME I POPULATION_2010 DIVISION P State name

1| Alabama 4 779,736 1| East South Central

2 | Alaska 710,231 2 Pacific () Population

3 Arizona 6,392.017 4 | Mountain

4 Arkansas 2,915 918 5 West South Central O Representatives
5 California 37.253.956 6 | Pacific

6 Colorado 5,029,196 8 Mountain ® Seat Change

T | Connecticut 3.574.087 9 Mew England

us_rep us_seatch
Obs | REPS_ 2010 Obs I STATENAME I SEAT CHANGE 2010

1 T 1AL 1| Alabama 0 AL
2 1 2 AK 2 | Alaska 0 AK
3 9 4 | A7 3 Arizona 1 AL
4 4 5 AR 4 | Arkansas 0 AR
5 53 6 CA 5 | California 0 CA
B T 8 CO 6 | Colorado 0 Cco
7 g 9 CT T | Connecticut 0 CcT

65

Keep:
e Statename
e Population
* Representatives
e Seat Change

Joins

proc sql;
select pop.statename,

pop 2010,

reps 2010,

seat_change 2010

us_pop as pop,

us rep as rep,

us_seatch as seat

pop.state = rep.state AND

rep.statecode = seat.statecode;

from

where

quit;
us_pop

POPULATION_2010 | STATE | DIVISION

us_rep us_seatch

Obs | STATENAME Obs | REPS_2010 | STATE | STATECODE Obs | STATENAME

SEAT_CHANGE_2010 STATECODE

1| Alabama 4.779,736 1| East South Central 1 T 1AL 1| Alabama 0 AL
2 | Alaska 710,231 2 Pacific 2 1 2 AK 2 | Alaska 0 AK
3 | Arizona 6,392,017 4 Mountain 3 9 4 AZ 3 | Arizona 1| AZ
4 Arkansas 2,915,918 5 | West South Central 4 4 5 AR 4 Arkansas 0 AR
5 | California 37.253,956 6 Pacific 5 53 6 CA 5 | California 0 CA
6 Colorado 5,029,196 8 | Mountain 6 7 8 CO 6 | Colorado 0| Co
7 | Connecticut 3.574.097 9 | New England 7 5 9/ CT 7 | Connecticut 0/CT

Joins

proc sql;
select pop.statename,

pop_2010,

reps_ 2010,

seat_change 2010

from us_pop as pop,
us_rep as rep,
us_seatch as seat

where

pop.state = rep.state AND

rep.statecode = seat.statecode;

quit;

Name of State or Region | 2010 _Population

Alabama 4 779,736
Alaska 710,231
Arizona 6,392,017
Arkansas 2.915 918
California 37,253,956
Colorado 5.029 196

2010 _Number of
Representatives

[
1
9
4
53

2010_Seat Change
0
0

o B s B

67

Some Good Uses for SQL

University of Nebraska
Medical Center

Joins related to dates

The goal is to match up blood data that was
collected before the day the seizure occurred,
but no more than one week before

seizure blood

Obs Pt ID| 5z Date S5z Duration Obs | Pt_ID Bld_Date | Drug_Level
1 112172019 3 1 1 1214/2019 13
2 2 01/28/2019 21 2 11 12M15/2019 11
3 3 04M13/2019 15 3 1 12M17/2019 1.7
4 4 05/04/2019 11 4 1 1219/2019 04

5 1127222019 0.8
6 2| 01/26/2019 02
T 2 01/29/2019 0.5
8 3 04/11/2019 21
9 3 04M12/2019 1.8
10 3 04/14/2019 23
1 4 | 05/056/2019 0.7 w
12 4 | 05/08/2019 0.5

=k
[#]

4 | 05M11/2019 0.2

Joins related to dates

proc sqgl;
select s.*,
b.*,
(bld date - sz date) as(days diff
from selzure as s,
blood as b
where s.pt ID = b.pt _ID AND
-7 le CALCULATED (days_diff le -1;

quit;
seizure blood
Obs Pt ID| 5z_Date 5z_Duration Obs | Pt_ID | Bld_Date Drug_Level
1 1121772019 3 1 1 12M14/2019 1.3
2 2| 01/28/2019 21 2 1 12M15/2019 11
3 3 041372019 15 3 1 12M17/2019 1.7 w
4 4 | 05/04/2019 11 4 1 12119/2019 04

Joins related to dates

proc sql;
select

from

S-*
b *

(bld _date - sz date) as days diff
seizure as s,

blood as b

where s.pt ID = b.pt_ID AND
-7 le CALCULATED days diff le -1;

quit;

Pt ID

(S R IS B %

5z_Date | 5z_Duration Pt _ID

121772013
1217/2019
01/28/2019
04/13/2013
04/13/2013

3
3
21
15
15

1

L | La | R

Bld Date Drug_Level days diff

121442019
1215/2019
01/26/2019
04/11/2019
04/12/2019

1.3
11
0.2
21
1.8

71

Joins related

proc sql;
create table sz _bld as
select

s.*,

b.*,

(bld_date - sz_date) as days_diff
from seizure as s,

blood as b
where s.pt_ID = b.pt_ID AND

-7 le CALCULATED days diff le -1

order by pt_id, days_diff;

select *
from sz_bld;
quit;

*1f you only want one blood draw per
patient, and prefer the draw that was
closest to the seizure date;
data sz _bld_single;

set sz_bld;

by pt_id days diff;

if last.pt_id then output;
run;

to dates

Pt ID| 5z Date
112172019
112172019
2| 01/28/2019
3 04M13/2019
3 041372019

Pt ID| 5z Date
1 121772019
2 01/28/2019
3 0411372019

5z Duration | Bld Date | Drug Level | days diff

3 12M14/2019 1.3 -3
3 12M15/2019 11 -2
21 01/26/2019 0.2 -2
15 0411172019 2.1 -2
15 041272019 1.8 -1

5z Duration | Bld Date | Drug Level | days diff

3 12M15/2019 1.1 -2
21 01/26/2019 0.2 -2
15 041272019 1.8 -1

Y

72

Confirming User-Defined
Formaits

proc format;

value age group low - 30 = "Age Group 1"
35 - 45 = ""Age Group 2"
46 - 55 = ""Age Group 3"
56 - 65 = ""Age Group 4"
66 - high = "Age Group 5";
run;
proc sqgl;

select distinct ageatstart,
ageatstart format=age group.
from sashelp.heart;

quit; w

73

Confirming User-Defined

Formats

proc format;
value age_group
low - 30 = "Age Group 1"

35 - 45 = ""Age Group 2
46 - 55 = "Age Group 3*
56 - 65 = "Age Group 4"
66 - high = "Age Group 5";
run;
proc sql;

select distinct ageatstart,
ageatstart format=age group.
from sashelp.heart;
quit;

Age at Start
28
29
30

Age at Start
Age Group 1
Age Group 1
Age Group 1

H
32
33
34

Y
32
33
M

35
36
a7
34
39
40
41
42
43
44
45
46
47
48

Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 2
Age Group 3
Age Group 3
Age Group 3

74

Confirming User-Defined
Variables

The goal is to create a new variable ‘risk’,
which takes the value ‘At risk’ if any of the
following variables have values with a star:

Blood Pressure Status Weight Status
BP_Status Frequency Percent Weight_5tatus | Frequency | Percent
High Yy 2067 43.52 Normal 1472 28.29
Normal 2143 | 4114 Overweight Yy 3550 68.23
Optimal 799 1534 Underweight 3 181 348

Frequency Missing = b

Y

75

Confirming User-Defined
Variables

data heart;
set sashelp.heart;

length risk $8.;

*Create overall risk variable;
iIT bp _status = "High™ OR

weight_status ne "Normal™ then risk = "At risk';
else risk = "0Ok";

run;

proc sqgl;
select distinct bp_ status,
weight_status,
risk,
count(*) as total
from heart
group by bp_status, weight status, risk;
quit;

76

Confirming User-Defined
Variables

Blood Pressure
proc sql; Status Weight Status | risk total
select distinct High At risk .
bp_status, High Normal At risk 394
weight status,
risk, High Overweight At risk | 1839
count(*) as total High Underweight Atrisk 32
from heart Mormal At nsk 2
group by
bp_status, MNormal MNormal Ok 704
weight_status, Mormal Owverweight At risk | 1340
_ risk; Mormal Linderweight Atnsk 97
quit;
Optimal At rnisk 2
Optimal MNormal Ok 374
Optimal Chverweight At nsk 371

Optimal Underweight Atnsk 52

Other Helpful Joins

SELECT =fields=
FROM Tabled A
INMER JOIN TableB B
OM Akey = B.key

SELECT =fields= SELECT <fiekds=>
FROM TableA A FROM Tabled A
LEFT JOIM TableB B

RIGHT JOIN TableB B
OM A key = B key

OM A key = B key

SQL

SELECT <fields>
FROM Tables A
RIGHT JOIN TableB B
OM A key =B key

WHERE Akey |15 NULL

SELECT =fields=
FROM Tabled A
LEFT JOIN TabkB B
OM Akey = B .key
WHERE Bkey 15 NULL

SELECT =fields=>

SELECT <fields=
FROM TableA A

FROM TableA A
FULL QUTER JOIN TableE B FULL QUTER JOIN TableE B
ON Akey = B.key OM Akey = Bkey

This work is licensed under a Creative Commaon s Attribution 3.0 Unported License. WHERE A key |5 NULL
Author: http:fcommaons.wikim edia.org/wikiflUser:Arbeck OR B.key IS NULL

e

https://upload.wikimedia.org/wikipedia/commons/9/9d/SQL_Joins.svg

Questions?

kksamson@unmc.edu

University of Nebraska
Medical Center

University of Nebraska

Medical Center

BREAKTHROUGHS FOR LIFE"

fif

[

v

.

1

7

N

Nebraska

Medical Center

	Build your Data Skills: Introduction to SQL
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Terminology
	S-Q-L vs. Sequel?
	Slide Number 10
	General Structure and Syntax of SQL
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Structure of Example Dataset
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Basic Queries
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New SAS Datasets
	Joins
	Slide Number 52
	Slide Number 53
	New Datasets
	Joins
	Joins
	Joins
	Desired Join
	Joins
	Joins
	Joins
	Desired Join
	Joins
	Joins
	Desired Join
	Joins
	Joins
	Some Good Uses for SQL
	Joins related to dates
	Joins related to dates
	Joins related to dates
	Joins related to dates
	Confirming User-Defined Formats
	Confirming User-Defined Formats
	Confirming User-Defined Variables
	Confirming User-Defined Variables
	Confirming User-Defined Variables
	Other Helpful Joins
	Questions?��kksamson@unmc.edu
	Slide Number 80

