
Build your Data Skills:
Introduction to SQL
Kaeli Samson, MA, MPH
Department of Biostatistics
College of Public Health
University of Nebraska Medical Center

June 25th, 2019

2

Top 3 Skills:
1. SQL
2. Github
3. Marketing

Hadley Wickham, PhD
Chief Scientist, RStudio

3

• Brief Intro to SQL
• Terminology
• General syntax/structure
• Description of Dataset
• Basic Queries
• Creating New Variables
• Joins
• Helpful SQL Code

Overview

4

SQL = Structured Query Language

Typically associated with use in
database management, but also
great for data management,
generally!

Brief Introduction to SQL

5

Brief Background in
Database Design
Student Student

Contact
Course Course

Description
Instructor Instructor

Contact

Josie 555-1234 Calculus II Integration Julie 555-8888

Ken 555-9845 Calculus II Integration Joe 555-2222

Brooke 555-7878 Calculus II Integration Julie 555-8888

Addison 555-1111 Calculus II Integration Julie 555-8888

Cole 555-6127 Calculus II Integration Julie 555-8888

Samantha 555-1534 Calculus II Integration Joe 555-2222

Josh 555-5463 Calculus II Integration Joe 555-2222

Josie 555-1234 GIS I Mapping Paul 555-3333

Ken 555-9845 GIS I Mapping Paul 555-3333

6

Brief Background in
Database Design

Instructor
ID

Instructor
Name

Instructor
Contact

1 Julie 555-8888

2 Joe 555-2222

3 Paul 555-3333

Course ID Course
Name

Course
Description

A Calculus II Integration

B GIS I Mapping

Student
ID

Student
Name

Student
Contact

1 Josie 555-1234

2 Ken 555-9845

3 Brooke 555-7878

4 Addison 555-1111

5 Cole 555-6127

6 Samantha 555-1534

7 Josh 555-5463

Enrollment ID Student ID Course ID Instructor ID

1 1 A 1

2 2 A 2

3 1 B 3

7

SQL can be used to “query” data,
but can do more, such as:
• Create new variables
• Join tables together
• Insert observations
• Edit observations
• Delete observations

Brief Introduction to SQL

Terminology

9

S-Q-L vs. Sequel?

10

Terminology

Dataset

Observation

Variable

Table

Row

Column

SAS SQL

Note: Since this presentation uses SAS to run SQL, SAS terms will be
used interchangeably with SQL terms, although I acknowledge in
some fields of study these terms are not considered synonymous.

General Structure and
Syntax of SQL

12

SELECT Choose variables/columns for your table

FROM Indicate source(s) of data (i.e. datasets)

WHERE Subsetting criteria for rows

GROUP BY Grouping desired for summary variables

ORDER BY Sort order for rows

Common SQL Clauses

Clauses must be in this specific order!

13

Common SQL Clauses
CREATE TABLE
SELECT
FROM
WHERE
GROUP BY
ORDER BY

SELECT
FROM
WHERE
GROUP BY
ORDER BY

Prints query result
(i.e. table) to output

Saves query result (i.e.
table) as SAS dataset

14

SQL in SAS
PROC SQL ;

SELECT
FROM
WHERE
GROUP BY
ORDER BY ;

QUIT ;

Specific
to SAS

15

SQL in SAS
Note: While SQL is an ANSI
standard language, each software
that runs it, including SAS, may
have their own options that are
specific to that software. As such,
some of the code in this
presentation may not work
outside SAS, but the general
principles will still apply.

Structure of Example
Dataset

17

• State Identifiers (x3)
• Name
• Abbreviation
• FIPS Code

• State Information
• Division
• Population
• Number of representatives
• Change in number of seats

Data: sashelp.us_data

18

sashelp.us_data (abbr.)

19

data us_pop;
set sashelp.us_data

(rename=(population_2010=pop_2010));
keep statename state division pop_2010;

run;

New Dataset

us_pop

Basic Queries

21

Printing all variables and observations in
a dataset

proc sql;
select var1, var2, var3, var4
from dataset;

quit;

Basic Structure of SQL Code

SQL

22

Basic Structure of SQL Code

dataset

variables

dataset

variables

Traditional SAS Code:

Printing all variables and observations in a
dataset

proc print data=us_pop;
var statename pop_2010 state division;

run;

proc sql;
select statename, pop_2010, state, division
from us_pop;

quit;

23

Printing all variables and observations in a
dataset

Basic Structure of SQL Code

Proc Print Proc SQL

24

Printing all variables and observations in
a dataset

proc sql;
select *
from dataset;

quit;

Basic Structure of SQL Code

select all variables

25

Printing all observations in a dataset

proc print data=us_pop;
run;

proc sql;
select *
from us_pop;

quit;

Basic Structure of SQL Code

Traditional SAS Code:

26

Printing all observations in a dataset

Basic Structure of SQL Code

27

Printing unique observations in a dataset

proc sql;
select division
from us_pop;

quit;

proc sql;
select distinct division
from us_pop;

quit;

Basic Structure of SQL Code

only select unique observations

28

Printing unique observations in a dataset

Basic Structure of SQL Code

proc sql;
select distinct division
from us_pop;

quit;

proc sql;
select division
from us_pop;

quit;

29

Printing a subset of observations

proc sql;
select *
from dataset
where var in (“A”, “B”, “C”);

quit;

Basic Structure of SQL Code

restrict observations
with where clause

30

Printing a subset of observations

proc print data=us_pop;
where division in ("West North Central", "Mountain");

run;

proc sql;
select *
from us_pop
where division in ("West North Central", "Mountain");

quit;

Basic Structure of SQL Code

Traditional SAS Code:

31

Printing a subset of observations

Basic Structure of SQL Code

32

Other examples of where clause in SQL
proc sql;

select *
from us_pop
where pop_2010 between 0 and 1000000;

quit;

proc sql;
select *
from us_pop
where 0 le pop_2010 le 1000000 and division = "Mountain";

quit;

Basic Structure of SQL Code

33

Other examples of where clause in SQL

Basic Structure of SQL Code

where pop_2010 between 0 and 1000000;

where 0 le pop_2010 le 1000000 and division = "Mountain";

34

Sort observations in a dataset

proc sql;
select *
from dataset
order by var;

quit;

proc sql;
select *
from dataset
order by var1, var2 desc;

quit;

Basic Structure of SQL Code

sort output using
‘order by’ clause

35

Sort observations in a dataset

proc sort data=us_pop;
by division descending population_2010;

run;

proc print data=us_pop;
run;

proc sql;
select *
from us_pop
order by division, population_2010 desc;

quit;

Basic Structure of SQL Code

Traditional SAS Code:

36

Sort observations in a dataset

Basic Structure of SQL Code

Creating New
Variables

38

Creating new variables

proc sql;
select statename, pop_2010, pop_2010/1000000 as new_pop
from us_pop;

quit;

Creating New Variables

new
variable

name

new
variable

definition

(not optional)

39

Creating new variables

proc sql;
select statename, pop_2010, pop_2010/1000000 as new_pop
from us_pop;

quit;

Creating New Variables

40

Cleaning up new variables

proc sql;
select

statename,
pop_2010,
pop_2010/1000000 as new_pop format=8.1 label="Pop in Millions"

from us_pop;
quit;

new
variable

label

new
variable
format

Creating New Variables

41

Cleaning up new variables
proc sql;

select
statename,
pop_2010,
pop_2010/1000000 as new_pop format=8.1 label="Pop in Millions"

from us_pop;
quit;

Creating New Variables

42

Summary Variables

proc sql;
select mean(pop_2010) as mean_pop
from us_pop;

quit;

Creating New Variables

new
variable

name

new
variable

definition

43

Summary Variables

proc sql;
select mean(pop_2010) as mean_pop
from us_pop;

quit;

Creating New Variables

The summary
function is applied
to the entire data
set (when there is

no group by clause)

44

Using the count function
proc sql;

select count(*)
from us_pop;

quit;

proc sql;
select count(division)
from us_pop;

run;

proc sql;
select count(distinct division)
from us_pop;

run;

Creating New Variables

45

Summary Variables by Group

proc sql;
select division, mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit;

Creating New Variables

new
variable

name

new
variable

definition

Grouping variable: will calculate
summary statistics for each
unique value of this variable

46

Summary Variables by Group
proc sql;

select division, mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit;

Creating New Variables

47

Summary Variables by Group
Note: It’s important to have your grouping
variable in both your select and your group by
clauses!

proc sql;
select division, mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit;

Creating New Variables

48

Summary Variables by Group
This is what happens if you leave the grouping variable out of the
select clause…

proc sql;
select mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit;

Creating New Variables

49

Summary Variables by Group
This is what happens if you forget to includes the group by clause:

proc sql;
select division, mean(pop_2010) as div_mean_pop
from us_pop;

quit;

Creating New Variables

50

proc sql;
create table div_stats as
select division, mean(pop_2010) as div_mean_pop
from us_pop
group by division;

quit;

Creating New SAS Datasets
new SAS

dataset name
not

optional

Joins

52

sashelp.us_data (abbr.)

53

data us_pop;
set sashelp.us_data

(rename=(population_2010=pop_2010));
keep statename state division pop_2010;

run;

data us_rep;
set sashelp.us_data (keep=

state
statecode
reps_2010);

run;

data us_seatch;
set sashelp.us_data (keep=

statecode
statename
seat_change_2010);

run;

New Datasets

54

New Datasets

us_rep

us_pop

us_seatch

55

Basic set up of a join
proc sql;

select dataset1.*,
dataset2.*

from dataset1,
dataset2

where dataset1.common_var = dataset2.common_var;
quit;

Joins

Common variable structure:

data_source.variable_name
When joining tables, it is important to let SQL know which
variables are coming from each dataset, especially when
variables in different datasets have the same name.

56

Basic set up of a join
proc sql;

select dataset1.*,
dataset2.*

from dataset1,
dataset2

where dataset1.common_var = dataset2.common_var;
quit;

Joins

Without the where statement, the output table would be
a Cartesian product join, where every observation in the
first dataset would be joined to the first observation in the
second table, and that would be repeated for each
subsequent observation in the second table, until you had
a table with 52*52 = 2,704 observations!

57

Use abbreviations for dataset names
proc sql;

select dataset1.*,
dataset2.*

from dataset1,
dataset2

where dataset1.common_var = dataset2.common_var;
quit;

proc sql;
select abbr1.*,

abbr2.*
from dataset1 as abbr1,

dataset2 as abbr2
where abbr1.common_var = abbr2.common_var;

quit;

Joins

the ‘as’ is optional in
the from clause

equivalent

58

Desired Join

us_rep

us_pop

59

Example of a join – keep all variables

proc sql;
select pop.*,

rep.*
from us_pop as pop,

us_rep as rep
where pop.state = rep.state;

quit;

Joins

Note that unlike merges in the data step, there’s
no need to sort the input datasets prior to a join!

60

Example of a join – keep all variables
proc sql;

select pop.*, rep.*
from us_pop as pop, us_rep as rep
where pop.state = rep.state;

quit;

Joins

61

Save joined tables as SAS dataset

proc sql;
create table pop_rep as
select pop.*,

rep.*
from us_pop as pop,

us_rep as rep
where pop.state = rep.state;

select *
from pop_rep;

quit;

Joins

prints the
new dataset

62

Desired Join
us_pop

us_seatch

But we only want
the following

variables in the
final joined table:
• Statecode
• Population
• Seat Change

63

Joins

us_pop us_seatch

We only want the following
variables in the final joined table:

• Statecode
• Population
• Seat Change

proc sql;
select statecode,

pop_2010,
seat_change_2010

from us_pop as pop,
us_seatch as seat

where pop.statename = seat.statename;
quit;

64

Joins
proc sql;

select statecode,
pop_2010,
seat_change_2010

from us_pop as pop,
us_seatch as seat

where pop.statename = seat.statename;
quit;

65

Desired Join

us_rep

us_pop

us_seatch

Keep:
• Statename
• Population
• Representatives
• Seat Change

66

Joins
proc sql;

select pop.statename,
pop_2010,
reps_2010,
seat_change_2010

from us_pop as pop,
us_rep as rep,
us_seatch as seat

where pop.state = rep.state AND
rep.statecode = seat.statecode;

quit;

Keep:
• Statename
• Population
• Representatives
• Seat Change

us_repus_pop us_seatch

67

Joins
proc sql;

select pop.statename,
pop_2010,
reps_2010,
seat_change_2010

from us_pop as pop,
us_rep as rep,
us_seatch as seat

where pop.state = rep.state AND
rep.statecode = seat.statecode;

quit;

Some Good Uses for SQL

69

Joins related to dates

seizure blood

The goal is to match up blood data that was
collected before the day the seizure occurred,

but no more than one week before

70

Joins related to dates

seizure blood

proc sql;
select s.*,

b.*,
(bld_date - sz_date) as days_diff

from seizure as s,
blood as b

where s.pt_ID = b.pt_ID AND
-7 le CALCULATED days_diff le -1;

quit;

71

Joins related to dates
proc sql;

select s.*,
b.*,
(bld_date - sz_date) as days_diff

from seizure as s,
blood as b

where s.pt_ID = b.pt_ID AND
-7 le CALCULATED days_diff le -1;

quit;

72

Joins related to dates
proc sql;
create table sz_bld as
select

s.*,
b.*,
(bld_date - sz_date) as days_diff

from seizure as s,
blood as b

where s.pt_ID = b.pt_ID AND
-7 le CALCULATED days_diff le -1

order by pt_id, days_diff;

select *
from sz_bld;

quit;

*If you only want one blood draw per
patient, and prefer the draw that was
closest to the seizure date;
data sz_bld_single;

set sz_bld;
by pt_id days_diff;

if last.pt_id then output;
run;

73

Confirming User-Defined
Formats
proc format;

value age_group low - 30 = "Age Group 1"
35 - 45 = "Age Group 2"
46 - 55 = "Age Group 3"
56 - 65 = "Age Group 4"
66 - high = "Age Group 5";

run;

proc sql;
select distinct ageatstart,

ageatstart format=age_group.
from sashelp.heart;

quit;

74

Confirming User-Defined
Formats

proc format;
value age_group
low - 30 = "Age Group 1"
35 - 45 = "Age Group 2“
46 - 55 = "Age Group 3“
56 - 65 = "Age Group 4"
66 - high = "Age Group 5";

run;

proc sql;
select distinct ageatstart,

ageatstart format=age_group.
from sashelp.heart;

quit;

75

Confirming User-Defined
Variables

The goal is to create a new variable ‘risk’,
which takes the value ‘At risk’ if any of the
following variables have values with a star:

76

Confirming User-Defined
Variables

data heart;
set sashelp.heart;

length risk $8.;

*Create overall risk variable;
if bp_status = "High" OR

weight_status ne "Normal" then risk = "At risk";
else risk = "Ok";

run;

proc sql;
select distinct bp_status,

weight_status,
risk,
count(*) as total

from heart
group by bp_status, weight_status, risk;

quit;

77

Confirming User-Defined
Variables

proc sql;
select distinct
bp_status,
weight_status,
risk,
count(*) as total
from heart
group by
bp_status,
weight_status,
risk;

quit;

78

Other Helpful Joins

https://upload.wikimedia.org/wikipedia/commons/9/9d/SQL_Joins.svg

Questions?
kksamson@unmc.edu

	Build your Data Skills: Introduction to SQL
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Terminology
	S-Q-L vs. Sequel?
	Slide Number 10
	General Structure and Syntax of SQL
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Structure of Example Dataset
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Basic Queries
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Basic Structure of SQL Code
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New Variables
	Creating New SAS Datasets
	Joins
	Slide Number 52
	Slide Number 53
	New Datasets
	Joins
	Joins
	Joins
	Desired Join
	Joins
	Joins
	Joins
	Desired Join
	Joins
	Joins
	Desired Join
	Joins
	Joins
	Some Good Uses for SQL
	Joins related to dates
	Joins related to dates
	Joins related to dates
	Joins related to dates
	Confirming User-Defined Formats
	Confirming User-Defined Formats
	Confirming User-Defined Variables
	Confirming User-Defined Variables
	Confirming User-Defined Variables
	Other Helpful Joins
	Questions?��kksamson@unmc.edu
	Slide Number 80

