

(Statistical) Machine Learning – Building and Evaluating Data-driven Prediction Models

IDeA – CTR Great Plains, March 12, 2020

Dr. Christian Haas

Department of Information Systems and Quantitative Analysis Co-Director Data Science Lab

Dr. Christian Haas

Department of Information Systems and Quantitative Analysis

Educational Background

- MSc in Computer Science, Georgia Institute of Technology
- PhD in Information Systems and Computational Economics, Karlsruhe Institute of Technology, Germany
- Post-PhD: 3 years as Senior Data Scientist at IBM Germany
- Since 2017: Assistant Professor, UNO.

Research Interests

Applied Machine Learning

Algorithmic Fairness

Agenda Part 1: Data Science, Machine Learning, and Main Types of Models

Part 2: Evaluation of ML models: how do we know if our model is working?

Part 3: Explainability, Fairness, and other considerations

Artificial intelligence yields new antibiotic

A deep-learning model identifies a powerful new drug that can kill many species of antibiotic-resistant bacteria.

Anne Trafton | MIT News Office February 20, 2020

Press Inquiries

PRESS MENTIONS

"Using a machinelearning algorithm, MIT researchers have identified a powerful new antibiotic compound.

In laboratory tests, the drug killed many of the world's most problematic disease-causing bacteria, including some strains that are resistant to all known antibiotics. It also cleared infections in two different mouse models."

At a high level, data science is a set of fundamental principles, processes, techniques and technologies that guide the **extraction of knowledge from data**.

Data Science – (Some) Subdomains

Machine Learning vs Traditional Statistics

Machine Learning

- Start with observed data
- Generalize these rules for new data
- Goal: Find rules that describe the relationship between the data and the answers/outcomes

Statistical Machine Learning – The Main Idea

Data

Y =	(Yes) No	X =	$\binom{50}{70}$	No No	65 [°] 87
	\/		\		

Outcome: Disease, Churn, Condition, ...

Predictor variables: Age, Conditions, ...

Goal of (Statistical) Machine Learning

$$\begin{array}{c} Y_i = f(X_i) + \epsilon_i \\ \hline \\ \text{Unknown function} \\ \text{that we want to} \\ \text{learn} \end{array} \qquad \begin{array}{c} (\text{Random}) \\ \text{measurement or} \\ \text{other errors} \end{array}$$

A Simple Example – Fitting a Function f

Types of Statistical Machine Learning Models

Model
$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \end{pmatrix} = f \begin{pmatrix} x_{11} & x_{12} & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \dots & \dots & \dots \end{pmatrix} + \epsilon_i$$

Supervised Learning

- We know / are given Y as observed outcomes
- Goal: finding function f that most closely allows us to predict Y
- Subtypes:
 - Regression
 - Classification

Unsupervised Learning

- We don't know / are not given Y
- Goal: gaining a better understanding of the relationships of the X variables
- Subtypes:
 - Clustering
 - Factor Analysis / PCA
 - Association Rules

Supervised Machine Learning: Two Main Tasks

1	Inference					
We h	We have a particular variable (called the target variable) and we want to learn how the target variable					
depends on the other variables / predictors.						
~						

- Goal: Understand which variables influence the target variable
- Example: which variables significantly influence the probability of getting a disease?
- Focus on models that provide insights into variable 'importance'

Prediction

We have a particular variable (the target variable) and we want predict it as closely as possible for our / new data.

- Goal: Minimize the prediction error
- Example: minimize the false positive and false negative rate in disease prediction
- Models with high predictive power are often more complex than models used for inference

Goal: Predict numerical Y Sample Models: (Non-)linear regression, Splines, Regression Trees, Generalized Additive Models, etc.

Use Case Example: Predicting Infections

Scenario

- Monitoring of current health threat
- Both short-term and long-term factors affect the future rate of infections
- Emergency planning requires a good estimate of future infections for resource planning

Goal

- Build a regression model that takes into account all relevant (and known) factors
- Estimate the quality of the model on previous forecasts

Methods and Challenges

- Model Types: Multiple linear regression, Advanced (non-linear) regression, splines, etc.
- Estimating all relevant potentially unknown factors can lead to high uncertainty of the prediction

Classification Models

$$Y = \begin{pmatrix} Yes \\ No \\ \dots \end{pmatrix} = f \begin{pmatrix} x_{11} & x_{12} & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \dots & \dots & \dots \end{pmatrix} + \epsilon_i$$

Y is categorical,
often binary f usually nonlinear

	Goal: Predict binary/ categorical outcome
Example	Algorithms usually give an additiona probability estimate
	Examples: Logistic Regression,
	Trees, Support Vector Machines, etc

Use Case Example: Disease Incidence Prediction

Scenario

- Understanding of influencing factors that make it more likely to develop a disease
- Better understanding can help with individual predictions, risk scores, and better treatment options
- Being able to identify high-risk patients allows for a better management of resources

Goal

- Predict the likelihood that a patient is going to develop a specific disease
- Follow-up with specific treatment options for low risk vs high risk patients

Methods and Challenges

- Model Types: decision trees (random forests), logistic regression, SVMs, etc.
- Other relevant health factors (e.g., comorbidities) need to be taken into account

Use Case Example: Identifying Patient Groups with Similar Health Patterns

Scenario

- Based on clinical measurements and general health, patients can be grouped into different categories: healthy, hypertension, diabetes, etc.
- Different patient groups have different needs and treatment options: certain combinations of conditions / measurements can occur more frequently in certain groups

Goal

- Identify and model different patient groups based on their health patterns and conditions
- The identified groups can then be managed individually with custom treatments

Methods and Challenges

- Model Types: k-means or hierarchical clustering.
- Patients can switch between groups over time, hence models need to be re-evaluated after a while

Data Science / Machine Learning – What Skills are needed?

Substantive

Expertise

People in the danger zone lack a deep statistical knowledge. As a result, they fail to understand why models work or anticipate changes in the environment that will make models less predictive.

Source: Drew Conway:4

AgendaPart 1: Data Science and Main Types of
Statistical Machine Learning Models

Part 2: Evaluation of ML models: how do we know if our model is working?

Part 3: Explainability, Fairness, and other considerations

Training

How do we make sure that the model will be useful in the future and adequately work on new data?

Evaluation

What are common metrics to validate the predictive performance of a machine learning model?

Evaluation of Models

Supervised Learning

For supervised learning models, we can compare their performance against the actual output:

$$y_i$$
 vs \hat{y}_i

Regression

In Regression models, this is often done by calculating the Mean-Squared-Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Classification

In Classification models, the most basic metric is the error rate:

Error Rate =
$$\sum_{i=1}^{n} I(y_i \neq \hat{y}_i)/n$$

How to Define Fairness Metrics in Classification Algorithms

Карра

Metric how the classifier compares against a purely random classifier 0 indicates random, 1 indicates 'perfect' classification

Classification – Which metric to use?

	Rare outcomes (e.g., rare disease)
Example	Number of people who don't have the disease: 9990 Number of people who have the disease: 10
	Always predict 'No disease'
Simple Model	Accuracy: 99.9% Sensitivity: 0%

In many cases, AUC (Area under the ROC curve), F1 Score (based on sensitivity and specificity), or kappa scores are used instead of accuracy

Using Model Validation to Prevent Overfitting

A complex model can often be 'too flexible' and learn irrelevant relationships from the data

An **overfitted model** is very susceptible to even small changes in the data and thus might perform worse than a simple model

Common Methods for Model Validation

AgendaPart 1: Data Science and Main Types of
Statistical Machine Learning Models

Part 2: Evaluation of ML models: how do we know if our model is working?

Part 3: Explainability, Fairness, and other considerations

Feature Selection – Which Variables should be Included in the Model?

Model

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \end{pmatrix} = f \begin{pmatrix} x_{11} & x_{12} & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \dots & \dots & \dots \end{pmatrix} + \epsilon_i$$

Not all features might be relevant for the model / improve the model performance

More features also mean more complex models

Filter Methods

Based on characteristics of each predictor, decide if it should be included or not

Examples: variance, correlation

Wrapper Methods

Estimate the effect/ usefulness of subsets of predictors based on outcome

Examples: forward/backward selection

Embedded Methods

Variable selection embedded in the learning procedure, i.e., modeldependent

Example: LASSO

Explainable AI – Can the Model Predictions be understood by (Human) Experts?

Machine Learning vs Deep Learning

Machine Learning and Deep Learning are closely related

Deep Learning is a subfield of machine learning

'Deep' only means that multiple subsequent layers of data representations are used. It does not infer a deeper knowledge or understanding!

A Deep Learning Example

A Esteva et al. Nature 1-4 (2017) doi:10.1038/nature21056

Algorithmic Fairness – Definition and Overview

Algorithms are increasingly used in everyday decision making

Recent development of open source tools to detect and mitigate biases, e.g. IBM 360 Algorithmic Fairness tool

Algorithmic Fairness studies the definition, identification, mitigation, and prevention of discrimination and bias in algorithm-based decision making

Algorithmic Fairness – Examples

Text Analytics

Word associations: 'she' -> 'nurse' 'he' -> 'doctor'

Criminal Recidivism

Predicted probabilities: Pr(recommit crime | Group 1) > Pr(recommit crime | Group 2)

Al-based Job Recruitment

Selection of resumes:

'male' -> yes

'female' -> no

How to Define Fairness Metrics in Classification Algorithms

One (or more) attributes are used to define two (or more) groups that should be treated fairly

Fairness metrics compare the outcome for the two (or more) groups

Bias Mitigation Strategies – How do we address the biases?

Simple Approach

Why not simply deleting / not using protected attribute(s) in prediction models?

Research shows that this is not sufficient and does not prevent discrimination

Analyzing the Effect of Fairness on Classification Performance

Effect of fairness improvements

What happens if we try to increase the fairness of a solution?

Specific *trade-offs* between fairness and 'performance' depend on algorithm, bias mitigation strategy, fairness metric, etc.

Captured by Pareto fronts

[Haas, 2019]

Thank you!

The University of Nebraska does not discriminate based on race, color, ethnicity, national origin, sex, pregnancy, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, marital status, and/or political affiliation in its programs, activities, or employment.