Machine Learning, Artificial Intelligence, and Precision

Medicine

Haoda Fu, Ph.D.

Research Advisor
Eli Lilly and Company
Email: fu_haoda@lilly.com

Oct. 8, 2020

RDSA

right data
smart analytics

1/175

@ Precision Medicine

® Individualized Treatment Recommendation Framework

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

O Reinforcement Learning and Multi-Stage Decision Making

2/175

“%Y Definition of Precision Medicine

Precision medicine is a medical model that proposes the customization of
healthcare, with medical decisions, practices, and/or products being
tailored to the individual patient. In this model, diagnostic testing is often
employed for selecting appropriate and optimal therapies based on the
context of a patient’s genetic content or other molecular or cellular
analysis. Tools employed in precision medicine can include molecular
diagnostics, imaging, and analytics/software.)
Summary
Making optimal healthcare decision for each individual patient based on
this subject’s context information.

3/175

“%Y lllustration Data

Table 1: An illustration dataset

DY |[Al X1 X2 X3
1 115|1 | F 26 78
2 11212 | M 28 82
31233 | M 31 89
4 109|2| F 35 94
51171 | M 22 73

Based on these data, how can we treat a new patient?
In other words, how can we learn a treatment assignment rule that, if
followed by the entire population of certain patients, would lead to the
best outcome on average?

4 /175

“%Y Three Key Components for Precision Medicine

Context based decision learning has data in 3 components:
e Xi,Xp,--+, X, is context information.
e Ais a context action.
e Y is a reward.

Notes:

e This data structure differs from data for typical supervised and
unsupervised learning.

e Examples on common mistakes about data collection for precision
medicine ...

5 /175

“%Y Other Examples: Car Purchase

Table 2: My Friends' Rating of Their First Cars

ID | Satisfaction | Car Type | Gender Age Mileage per Day
1 90% Focus F 26 7.8
2 85% Corolla M 28 8.2
3 70% Civic M 31 8.9
4 75% Corolla F 35 9.4
5 60% Civic M 22 7.3

Learning from these data, what car should | purchase?

6/ 175

L8, Other Examples: Business Investment

Table 3: Previous Commercial Investments and Returns

Case ID | Return | Type | Month Location Share of Market
1 1.2 TV Jan MW 12,5
2 0.9 Radio | Oct NE 18.2
3 1.4 Web Nov WE 12.9
4 1.3 Web Dec MW 10.4
5 1.2

Radio

Feb

SE

11.3

Learning from these data, what is our best way to invest in New England

area if our product has 12% market share in this March?

7/175

“%Y Other Examples: Connected Care Device

Table 4: Sending Out a Reminder at Right Time for Right Patients

ID | Cost | Send Reminder | FBG 3 Hypo SU
1 | $875 0 159 Y Y
2 | $475 0 170 Y N
3 | $150 1 160 N N
4 | $375 1 182 Y Y
5 | $525 1 110 N Y

Learning from these data, how can we develop a smart reminder to
recommend patients to see their doctor within the next 3 weeks?

8 /175

‘%Y Other Examples: Choice of Digital Biomarkers

Table 5: Choose Right Digital Biomarker for Alzheimer's Disease

ID | Accuracy | Digital Biomarker State Age Gender
1 70% App No.1 Mild 63 F
2 83% App No.2 Moderate 72 F
3 7% App No.1 Mild 65 M
4 62% App No.3 Severe 86 M
5 53% App No.2 Moderate 77 F

Learning from these data, which is the most accurate digital biomarker
that we need to choose for a new patient based on this subject’s
characteristics? If we can only choose one digital biomarker for patients
with mild Alzheimer’s Disease which one we need to utilize?

9/175

‘%Y Making Optimal Decision Based on Data

Broad applications, some examples:
e Treatment selection: which treatment is the best for this patient?

e Treatment transition: should we keep using the current treatment or
consider an intensification?

¢ Business analytic: how to invest (among a few choices) to maximize
the return?

e Recommendation system: which item should a system recommend to
a customer to maximize profit?

All these problems are similar in terms of data format and analytic
solutions. Essentially, we focus on a problem of making the optimal
decision based on data.

So, what is a general framework to solve this?

10 / 175

‘%Y Reinforcement Learning Framework

Later you will see that:

e This problem is a special case in reinforcement learning framework
which is different from supervised learning (e.g. classification) and
unsupervised learning (e.g. clustering).

e Traditional alternatives (e.g. linear regression) are not efficient to
solve these problems.

e It is connected with supervised learning methods (e.g. support vector
machines).

e It can be extended to multiple stage decision making to optimize
treatment sequences (e.g. dynamic treatment regimes).

11/ 175

® Individualized Treatment Recommendation Framework

12 / 175

‘%Y Notations

e There are N subjects from a large population.

o A; is the treatment assignment (actions), where i =1,--- N.

e Y is the response assuming that larger Y; is better (rewards).

e X; is a vector of covariates.

e (Y, A, X) is the generic random variable of {(Y;, A;, X)}.

e P is the distribution of (Y, A, X).

e E is the expectation with respect to P.

e Population space X, i.e. Xj € &.

e D(-) is a treatment recommendation based on covariates, i.e.
D(): X = A

o PP is the distribution of (Y, A, X) given that A = D(X).

13 / 175

“%Y Modeling Assumptions

Assumption 1: Positivity Je > 0, P{P(A=a|X) >¢,Vae A} = 1.
Assumption 2: Strong ignorability {Y*(a):a € A} L A|X.
Assumption 3: SUTVA Y = 2K v*(a)l(A = a).

SUTVA: Stable Unit Treatment Value Assumption. Y*(a) is the potential
outcome if patient X takes treatment a.

14 / 175

‘%Y Value Function

Define,
ED(Y):/YdPD:/Y%dP:E[WY],

where we use the fact that,

PP plylx.a)l{a=D(}p(x) _ Ha=D(x)}

dP - plylx.a)plalx)p(x) plalx)
Our objective is to find D(-) to maximize the following value function:

__[HA=D(X))
D, < argmane?(v)=£|[HEE Y|, ()

where R is a space of possible treatment recommendations.

15 / 175

‘%Y Advantages of This Framework

Y is able to handle binary, continuous, time to event data type.

A is able to handle multiple treatments.

X is able to incorporate variety of variables. For example, if X
includes study ID, the framework can be used for meta analysis.

P(A|X) allows treatment assignments depending on covariates. So it
can handle both randomized control trials and observational studies.

It has an objective function to evaluate different treatment
assignments.

16 / 175

“%Y An Example to Build Intuition

Table 6: Example Data

© 0 ~NO O~ WD =g
<

P

P(AIX)
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

N NONMNNNRRFRRRRDS

W WWwWwwo s wnN =
OO WONREHEOTPWDNOR

—
()

Questions to think about: why is P(A|X) = 0.57 what do the responses

look like?
17 / 175

“%Y Which Doctor is Better

Suppose we have two doctors and each of them has a treatment rule.
Which doctor is a better one?
e Doctor Adam: give patients treatment 1 if X > 2, and treatment 2
otherwise, denoted as Da(X).
e Doctor Barry: give patients treatment 1 if X > 3, and treatment 2
otherwise, denoted as Dg(X).

18 / 175

“%Y Example Continued

Table 7: Calculation Based on Table 6

D[Y A X]|P(AX) Ds Dg Da=A Dg=A
11 1 1] 05 2 2 0 0
212 1 2| 05 1 2 1 0
313 1 3] 05 1 1 1 1
414 1 4| 05 1 1 1 1
5|5 1 5| 05 1 1 1 1
6 /3 2 1| 05 2 2 1 1
713 2 2| 05 1 2 0 1
813 2 3| 05 1 1 0 0
93 2 4| 05 1 1 0 0
10/3 2 5| 05 1 1 0 0

19 / 175

“%Y Example Continued

Doctor Adam:

1/0 1 1 1 1 1
EPAY)= — [== x 14 = x2+ = x3+ — x4+ — x5+ —
(Y) 10(0.5>< o5 05 o5 o5 T o
0 0 0 0
x3+ﬁx3+ﬁx3+ﬁx3+ﬁx3>
=34

Doctor Barry:

1/0 0 1 1 1 1
EPe(Y)= — | o x 14+ = x2+ = x3+ = xd+_—— x5+ —
) 10(0.5>< To5 o5 P os o o

0.5
1 0 0 0
x3+ﬁx3+ﬁx3+ﬁx3+ﬁx3>
= 3.6

Conclusion: Doctor Barry's rule is better than Doctor Adam's. Can we

improve Doctor Barry's rule? How can we find the best rule?
20 / 175

“%Y Graphic Illustration

Individualized Treatment Recommendation

0 — o)
0 Treatment 1 it
»* Treatment 2
ITR
< - (]
> o 1@ e > e X
~ O
- 40"
T I I I T
i 2 3 4 5

21 /175

“%Y Thought Provoking Questions

e Both treatment 1 and treatment 2 have an average treatment effect
as 3.0. But ITR generates average benefit value 3.6. Can algorithm
beat a new molecule entity?

22 / 175

“%Y Thought Provoking Questions

e Both treatment 1 and treatment 2 have an average treatment effect
as 3.0. But ITR generates average benefit value 3.6. Can algorithm
beat a new molecule entity?

e Treatment 1 should not be only better than treatment 2. It has to be
better with a non-trivial benefit margin. How can we handle this case?

22 / 175

“%Y Thought Provoking Questions

e Both treatment 1 and treatment 2 have an average treatment effect
as 3.0. But ITR generates average benefit value 3.6. Can algorithm
beat a new molecule entity?

e Treatment 1 should not be only better than treatment 2. It has to be
better with a non-trivial benefit margin. How can we handle this case?

e What if the treatment randomization ratio is not 1:17

22 / 175

‘%Y Thought Provoking Questions

e Both treatment 1 and treatment 2 have an average treatment effect
as 3.0. But ITR generates average benefit value 3.6. Can algorithm
beat a new molecule entity?

e Treatment 1 should not be only better than treatment 2. It has to be
better with a non-trivial benefit margin. How can we handle this case?

e What if the treatment randomization ratio is not 1:17
e What if we have multiple covariates? The rule can be complicated.

e What if we have multiple treatments?

22 / 175

‘%Y Analysis results: how ITR creates more value.

This data analysis shows how ITR creates additional value for patients.
We have 1978 patients from two treatment arms, and 2 important

biomarkers are selected from 35 biomarkers.

Table 8: HbAlc Reduction Before and After Following ITR. Patients with baseline
fasting insulin > 61.12pmol/L and baseline HbAlc > 8.1% (AL) are
recommended to take Pioglitazone, otherwise (A%) patients are recommended to
take Gliclazide. After following ITR, the overall HbAlc reduction changes from
-1.287% to -1.473%. Notes: ITR is our proposed method which is referred to as

Individualized Treatment Recommendation.

Original Follow ITR
-1.287 -1.473
Gliclazide | Pioglitazone Gliclazide | Pioglitazone
Al 1394 -1.864
Mean -1.271 -1.303 A0 119 0.932

23 / 175

&2, R Hands On Example: ITR.CS

Statistics

Research Article

Received 25 November 2014, Accepted 1 February 2016 Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/$im.6920

Estimating optimal treatment regimes via
subgroup identification in randomized
control trials and observational studies

Haoda Fu,*" Jin Zhou® and Douglas E. Faries?

Note: lllustration Codes Are Based on This Paper.

24 / 175

“%Y To be completed ...

e write down data generation model to generate training data sets.
e write down a Rcpp package for students to install and try.

e generate the results.

25 / 175

“%Y Key Insights on Solving ITR

Three connections:
® Maximization and minimization of the value function.
® Classification and loss functions.

© ITR and weighted classifications.

26 / 175

“%Y From Maximization to Minimization

_ _[1{A=D(X)}
D, € el EP(Y)=E [W Y] : (2)

Making connections:

{ Y }_E[I{A:D(X)}Y] _ E[I{A;&D(X)}Y],

P(A|X) P(A|X) P(A|X)

D, € argminEP(Y)=E [MY] . (3)

DER p(AIX)

27 / 175

“%Y Empirical Evaluation

D, € argminEP(Y)=E [MY] .

DeR p(AlX)

When we have data, we can evaluate the objective function as,

D, = argminn! E
DeR 1 I

/{A # D(Xi)}- (4)

28 / 175

“%Y Classification Problems

A classification problem is to train a rule D(X) on a dataset to predict
new subject membership. A simple dataset can be as below,

Table 9: An illustration dataset

DA X, X2 X3
11| F 26 78
22| M 28 82
31| M 31 89
4 3| F 35 94
51| M 22 73

29 / 175

“%Y Classification and Loss Function

Roughly speaking, A good classifier has smaller errors (we will discuss
regularization later).

— -1
D, = argggnn ZI{A # D(Xi)} .

30/ 175

“%Y Classification and Loss Function

Roughly speaking, A good classifier has smaller errors (we will discuss
regularization later).

D, = argminn 1E:I{A # D(Xi)} .

DeR

If we compare our ITR objective function as below,

. Y;
— argminn!
Do = argminn™) Ay A # DX

30/ 175

‘%Y Important Implications and Next Steps

e We can solve the original reinforcement learning problem (ITR) as a
weighted supervised learning problems.

e There are vast amount of methods and literatures on solving
classification problems, in particular for binary classifications.

e With some modifications, we can leverage these existing algorithms to
develop our ITR algorithms.

e In the next section, we will focus on support vector machines (SVM)
theories and implementations for binary classification and binary
treatment ITR, and extends it to multicategory ITR through angle
based classifiers.

31 /175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

32 /175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces
Minimal Background on Convex Optimization

33 /175

“%Y Mathematical Optimization

Constrained optimization has the form

minimize Q(0)
subject to cScRr?
e 0= (01,02,---,04): optimization variables.

Q(6) : RY — R : objective function.
S: feasible set.

0*: optimal solution which has the smallest value of Q(#) among all
vectors that are in the feasible set S.

Convex optimization: both objective function and feasible set are
convex.

34 /175

“%Y Equality Constrained Minimization

Consider

minimize Q(09)

subject to R(#) =0

S=1{0:R(9) =0} is a (d — 1)-dimensional surface in RY.
For every 6 such that R(f) =0, VR(6) is orthogonal to the surface.

If 6% is a local minimum, then VQ is orthogonal to the surface at 6*.

35 /175

“%Y Lagrange Multiplier

e Conclusion: at a local minimum, there exists A € R such that
VQ(0*) = A\VR(6")
e This leads us to introduce the Lagrangian
L(0,\) = Q(6) + AR(0)

where)\ is the Lagrange multiplier.

e We have argued that a local minimum corresponds to a stationary
point of the Lagrangian. Furthermore, we can reverse our logic to
deduce that a stationary point of the Lagrangian is a local optimum.

36 / 175

“%Y Inequality Constrained Minimization

Now consider the (primal) problem

minimize Q(9)
subject to R(#) <0

Suppose 6* is a local minimum. There are two cases:
e Inactive constraint: R(6*) < 0 = VQ(#*) = 0 = stationary point of
L(6,A) with A=0
e Active constraint: R(6*) = 0 = same as equality constraint except
we require A > 0.

37 /175

“%Y Karush-Kuhn-Tucker Conditions

In either case, we have AR(6*) = 0. Therefore, a local minimum satisfies
(Karush-Kuhn-Tucker conditions)

VL") = VQ(6°)+AVR(6*) =0
R(O%) =
AR(0%) =

A=

e Often the KKT conditions may be used to transform the primal
problem to an equivalent dual problem, where the variables being
optimized are the Lagrange multipliers.

o Reference: Boyd and Vandenberghe (2009) Convex Optimization.

38 /175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

Maximum Margin Classifer

39 /175

“%Y Classification

Observe a collection of i.i.d. training data
(X1,a1), (X2, a2), ..., (Xn, an) from P.

Covariates (inputs, features, prediction variables): X; = (X1, ..., Xjp)

Response variable (class label, output):

aj € {Clac2a"'aCK}

We want to build a model D(X) (using the training data), so that
when seeing a new input vector X, we can predict the output 3.

40 /175

“%Y Classification Errors and Loss Function

e Loss function (0/1):

[0 if A=D(X)
L{A,D(X)}_{ 1 if A#D(X)

e Misclassification error

R(D) = EpL{A D(X)}
— PplI{A # D(X))].

e For binary class case, Bayes optimal classifier (A € {—1,1}):
D*(X;) =argmin R(D)
D
=sign{Pr(A=1X=X;) —Pr(A= -1 X=X))}.

o Bayes error: R(D*).

41 /175

“%Y Binary Large-Margin Classifier

ae{£1};

Estimate f(X) with classification rule sign{f(X)} : RY — {#1},
5=+1if f(X)>0and 3= —1if f(X) < 0.

A;f(X;): functional margin.

Correction classification if A;f(X;) > 0.

The 0-1 loss: I{A;f(X;) <0}.

42 /175

e, Support Vector Machine (SVM)

Linearly separable: Find f(X) = o + X ' 3 to separate two groups of

points.

Note:

e red cross +— +1;

0.8

0.6

0.4

0.2

0.5

0.8

0.6

0.4

0.2

blue circle +— —1.

0.5

“%Y Which one is the best?

0.9}
0.8} o o
0.7}
0.6}
0.5
0.4f x
0.3 e
0.2 *
0.1 x x

44 /175

“%Y SVM: Maximum Separation

45 /175

“%Y Signed Distance to Hyperplanes

e Hyperplane is defined by
{X: Bo +XTﬂ = 0}.

e For any point Xp in the
hyperplane, XOTB = —0fp.

e Signed distance of point X to
the plane is <H;%H’X — X0>,
where Xp is any point in the
plane.

46 / 175

“%Y Properties of Hyperplane

The affine set L : {X|f(X) = o+ B' X = 0}
e The normal vector of L is 5* = 3/||8]|.
e For any Xy € L, we have,

BT X0 = —Po.
e The signed distance of any X to L is
f(X)
BT(X = Xo) = 50
18

Thus f(X) is proportional to the signed distance from X to L.

47 /175

“%Y Maximum Margin Classifier

Goal: Separate two classes and maximizes the distance to the closest
points from either class (Vapnik 1996)

e Unique solutions

o Better classification performance on the training data

maximize ¥
8,80
subject to Ai(Bo+ X' B) >,
18]|= 1.

All the points are at least a signed distance v from the decision boundary
e Maximize the minimum distance
e Need constraint ||3]|=1

48 /175

“%Y Equivalent Problem

Try to get rid of the constraint ||3]|=1

——A; X

or equivalently
Ai(Xi" B + Bo) = 1|8

Any positively scaled (3, Bp) also satisfies this inequality. We set Hﬂ”—
Then the objective function v = 1/|5], and

minimize =
i 151
subject to AX B+ B)>1, Vi=1,..,n

Linear SVM for perfectly separable cases.
Note: by definition 1/||3]| is the width of margin.

49 /175

“%Y Maximal Margin Classifier

Geometrical Margin:
Defined as d; + d_ where d;(d_) is the shortest distance from the
separating hyperplane to the closest positive (negative) training data
point.

e Margin is bounded below by ”%”

e Use squared margin for computation convenience.

e A large margin on the training data will lead to good separation on
the test data.

Defined validly only for separable cases.

50 / 175

“%Y Optimal Hyperplane of SVM

minimize = || B2

subject to Ai((B,Xi) +Bo)—1>0, Vi=1,2---,n

e Lagrange function is :
Lp(B,Bo,) = —IIﬁHz Za:{A (B, Xi) + fo) — 1}

e For any fixed a:

E)L(B—IB,B(),Oé) 0, j=L2,---,p B = ZflaAX
o) _ g Tl 0= aA

51 /175

&2, The Dual Problem

n n
. 1
maximize Lp(a) = Za,- ~5 Z ajajAiA (X, X;)
i=1 ij=1
subject to aj >0, i=1,2---,n

zn: Oé,'A,' =0.
i=1

This optimization is a quadratic programming problem and can be solved
using classical optimization software. We are going to provide details on
implementation in the R hands on example.

52 / 175

“%Y Primal vs. Dual

e Minimize Lp with respect to primal variables g, 3
e Maximize Lp with respect to dual variables «;

e Maximizing the dual is often a simpler convex QP than the primal, in
particular when p > n.

53 / 175

“%Y Recovering the Optimal Hyperplane

e The optimizer of the dual: o*

e [3* is given by:
B =Y aiAX;.
i=1

o 35777
e Decision function:
f(x) = (8%, X) + Bg-
e Classification rule:
sign{f(X)}.

54 / 175

“%Y Support Vectors

The KKT conditions imply,
of { A5 + X8 ~ 1} =0,

These imply
o If Aif*(Xi) > 1, then a} = 0.
e If af >0, then A;f*(X;) =1, or in other words, X; is on the
boundary of the “slab”.
e The solution 8* is defined in terms of a linear combination of the
support points.

55 / 175

“%Y Geometric Interpretation: Support Vectors

The i-th point is called a support vector if a; > 0

1

091

0.8

0.7

061

0.5

0.4r

031

0.2p

0.1r

0

0 0.2 0.4 0.6 0.8 1

The i-th point is a support vector => A;((5*,Xi) + o) =1 = 3§ = ...

56 / 175

“%Y Comments on Various Classifiers

If the classes are really Gaussian, then
e the LDA is optimal.

e the separating hyperplane pays a price for focusing on the (noisier)
data at the boundaries

Optimal separating hyperplane has less assumptions, thus more robust to
model misspecification.

e The logistic regression solution can be similar to the separating
hyperplane solution.

o For perfectly separable case, the likelihood solution can be infinity.

57 / 175

“%Y Linearly Non-Separable Case

091

58 / 175

“%Y General Case for SVM

e Nonseparable: “zero”-error not attainable — “slack variables” {;}7_,

B:B0,€
subject to Aif(Xi) >(1—-¢&), i=1,...,n,
&>0, i=1,...,n,

1 n
minimize §||,8||2 + CZ&,’
i=1

where C > 0 is a tuning parameter.

59 / 175

“%Y Geometric Interpretation: Slack Variables

0.9

1 Slack variables ¢ satisfies
Ai(<ﬁ7XI'> + /BO) 2 1-— €i7
£ >0

i=1,...,n.

60 / 175

“%Y Interpretation of SVM

Objective function consists of two parts

e For an error to occur, & > 1. So > ;& is an upper bound on the
number of training errors.

e maximize the margin (minimize the inverse margin %||B||2)
About C:

e Tuning parameter; balances the error and margin width

e For separable case, C = co. (why?)
Inequality constraints:

e Soft classification; allows some errors (misclassifications).

61/ 175

“%Y Quadratic Programming

Equivalently

B,60,§

U .
minimize §||ﬂ|| + C;fi
subject to A;f(X;) > (1—-¢&), i=1,...,n,
§i207 i:17"'7n7

The Lagrange primal is

Lo = 21BIP+C Y6~ D i {nlBo+ XT8) (1 - &)} — S e
i=1

i=1 i=1

where a;, pj > 0.

62 / 175

“%Y Quadratic Programming Continued

Setting the derivatives to zero, we get,

oL, 4

- B = Oz,'A,'X,'
% 2

oL a

—P . 0= A
960 ;al i
oL,

8—& . a;:C—u;

63 / 175

&4, The Dual Problem for SVM

Substituting into the Lagrange primal, we obtain the Lagrange dual
problem as

minimize Lp(a) = Z ajajAA(Xi, Xj) Za,
I,_[1
subject to 0<ae;<C, i=12,---,n

i a;A; = 0.
=1

e Can be solved by quadratic programming.

o Recover B: B =31 ajAiX;; For given 3, By can be solved using
KKT conditions or Linear Programming (LP).

64 / 175

“%Y Support Vectors

The KKT conditions include

of {Ass + X3~ (1 -€n} = 0

pi& =0
These imply
Aiff(Xi))>1 = af=0
A,'f*(X,') <l = Oé;-k =C
Aff(X))=1 = 0<af<C

65 / 175

The solution is expressed in terms of fitted Lagrange multipliers a;:
n
B=Y aAX;
i=1

Some fraction of @; are exactly zero (from KKT conditions); the X; for
which @; # 0 are called support points S.

?(X) = BO + XTB\: B\o + Za,‘A,‘<X,X;>
ieS

66 / 175

“%Y Support Vectors

e a; =0 — Aif(X;) > 1; not
needed in constructing f(X).
Support vectors:

° 0<C¥,’<C—>A;f(X,‘)Zl
(Solve fp).

e a;=C — A,'f(X,') < 1.

e Qutliers are SVs!

67 / 175

‘%Y Tuning Parameter C

e large C puts more weight on misclassification rate than margin width
— more attention on correctly classified points near the decision
boundary (smaller bias)

e small C puts more weight on margin width than misclassification rate
— more attention on data further away from the boundary (smaller
variance)

Misclassified points are given weight, no matter how far away.
Tuning procedures:
e cross-validation; leave-one-out cross validation

68 / 175

Bayes Optimal Classifier

Mixture of Gaussian.

e Red class: 10 centers p from
N{(=1,1)T, I}; then randomly
pick one center, and generate a
data point from N(g, 1/5).

e Green class is similar, with
N{(1,-1)",1}.

e Bayes error: 0.21.

69 / 175

“%7 Linear SVMs

Training Error: 0.270 P @0 Training Error: 0.26 -~ P @0

Test Error: 0.288 Test Error: 0.30

Bayes Error: 0.210 o} Bayes Error: 0.21 o}
C =10000 C=001

Resulting classifier is YS(X) = sign(go + XTB). 70 /175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space

71/ 175

“%Y Non-Linear Boundaries???

2 -
1.5 x o
X X
X x
! Y
O X
@)
0.5 % o0 -
o ©O O
O
O ©
0 e}
5
X
-0.5 « « o
o0
s X
X x)
-1.5¢
X
) .
-2 -1 0 1 2

72 /175

“%Y Donut Example

15 o e Decision function

o; ; F(Xi) = Xq + X5 — 1,
-° . Let ¢(X;) = (X7, X3) ",

) B=(1,1)7, and By = —1.
. T F(5) = (B 6(X) + fo

73 /175

“%Y Extension to Non-Linear Boundaries

o Key idea: transform X; into a higher dimensional space

o Input space: the space the point X falls into.
o Feature space: the space of ¢(X) (or denote as h(X))

e Why transform?

o Linear operation in the feature space is equivalent to non-linear
operation in the input space
o Classification can become much easier with a proper transformation

74 / 175

“%Y Reformulation of SVM Optimization

SVM solves

Bo,B1 2” || P SVM{ ()}

lsym(u) = (1 — u)4+ (Hinge Loss).

Nonlinear learning can be achieved by basis expansion or kernel
learning.

Kernel Trick: Replace (Xj, X;) by K(X;, X;) and

f(X) = 27:1 A,-a,-K(X,-, X) + Bo.

75 / 175

Lty Flexible Classifiers

e Enlarge the input space via basis expansion (p — q):
h(X) = (hi(X), ha(X), ..., he(X)).
e Lagrange dual and solution become
LD_Za, Zaa/AA (h(X;), h(X;)),
i=1i'=1

and

f(X) = Fo+ Z a;Ai(h(X), h(X;)).

ieS

76 / 175

2nd degree polynomial in R?. We choose:

h(X) =1

h(X:) = V2Xa
h3(Xi) = V2Xi
ha(Xi) = Xi
hs(Xi) = Xi22
he(Xi) = V2XiuXao

77 / 175

“%Y Kernel Trick and Decision function of kernel SVM

B =21 iAih(Xi)
The decision function is given by:

F(X) = (B, h(X)) + Bo

n
= D aiAK(X, X) + fo
i=1

The explicit computation of h(X) is not necessary.
It is enough to have kernel K(X;, Xj) = (h(X;), h(X;)).
e Given a suitable kernel function K (X, X’), don't need h(X) at all.

F(X)=PBo+ > aiaiK(X, X))
ics

78 / 175

“%Y Example Continued

If we choose
K(XHXI) = (1 + <Xia)<j>)2

then

K(Xi, X)) = (1+ XaXi+ Xi2X2)?
142X Xj1 + 2X2Xj2 + (X1 Xi1)?
+(Xi2X2)? + 2Xi1 Xj1 X2 X2
(h(Xi), h(X;))

79 / 175

“%Y Popular Kernels

e Linear: K(X;, Xj) = (Xi, Xj) = >_h_; XuXik.
e Polynomial: K(Xj, Xj) = (1+ (X,-,Xj>)d.
¢ Gaussian (Radial Basis Function, i.e. RBF):
K(Xi, Xj) = exp(—a || X; = Xj[I?) = exp { —o 20—y (Xik — Xix)? }-

K(X;, X;) is a symmetric, positive (semi-) definite function: For every
n=1,2,..., and every set of real numbers {ay,,...,an} and
X1, X2, ..., Xp, we have Y7, _; ajaj K(X;, Xj) > 0.

80 / 175

“%Y Example

Example: All Degree 2 Monomials

d:R> - R
(2 2
(Ily .ZEQ) = (Zl7 22, ZS) = (zla \/Ezle IQ)
23
0 0
0
0 ’ o
\ 0
o\, 0
0\ 0
Du\\u
\\ . DD \ 0 0 Z;
\ 0N -
/e

B. Schilkopf, Canberra, February 2002 81 /175

“%Y Role of Tuning Parameters

Large C

e discourage any positive &;

e may lead to an overfit wiggly boundary in the original space
Small C

e encourage small value of |||

e may lead to smoother boundary
Adaptive Tuning of Parameters

e cross validation

e minimizing test errors

82 / 175

“%7 Nonlinear SVMs

SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space

.57 P

Training Error: 0.180 Training Error: 0.160 “e “
TestError: 0.245 TestError: 0.218 TR H
Bayes Error: 0.210 Bayes Error: 0.210 BN]

83 / 175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

SVM and Function Estimation

84 / 175

“%Y SVM via Loss + Penalty

Loss

—— Binomial Log-likelihood
Support Vector

With f(X) = o + X T 3, consider
. A
minimize 1— AF(X)Y 421812
e D (1 ARG 1]

Solution identical to SVM solution, with
A=1/C.

85 / 175

“%Y SVM and Function Estimation

SVM with general kernel K(-,-) minimizes:

n
A
> {1 Af(X)}, + EH'CH%{K
i—1

with f € Hg. Hk is the reproducing kernel Hilbert space (RKHS) of
functions generated by the kernel K(-,).

86 / 175

Function space Hy generated by a positive (semi-) definite function
K(Xi, X;). Eigen expansion (Mercer's theorem)

K(Xi, X;) 27k¢k Xi)ow(Xj)

k=1

where

00
Yk = 0, Z’YI% <00
k=1

87 / 175

e, RKHS Continued

Define Hi to be the set of functions of the form
F(X) =) Okdi(X)
k=1

and define the inner product

<Z on(X), 3 5k'¢k'(X)> def 5~ Ok
=t k=1 Yk

Hy k=1

Then the squared norm of f is
IFCOFe= D O/ vk
k=1

which is generally viewed as a roughness penalty.

88 / 175

“%Y Basis Representation

More generally we can optimize
. A
mil}igl}}fe [; AL (X)) + EWH%{K] -

Equivalently

n 00 A& 92
minimize A, 0 Xi)+ = .9
e [Seia Y o)+ 53|

89 / 175

“%Y The Representer Theorem

The solution has the finite form (Wahba 1990)
N n
FX) =) _aiK(X,X)
i=1

a finite expansion in the representers K (X, X;). Example: smoothing
spline and thin-plate spline.

90 / 175

“%Y Reproducing property

(KX, X0, F(X))nye = £(X0)
Hence oo
1F130= D> K(Xi, X)aiay
i=1 j=1
Equivalent finite dimensional criterion (in matrix notation):

minimize {(A, Ka) + %aTKa,

where K is the n x n matrix with elements K (X, Xj).

91 / 175

“%Y Loss Functions

To estimate the classifier (threshold), sign{Pr(A = 1|X) — Pr(A = —1|X)}

e 0-1 Loss:
A f(X)} = I{Af(X) < 0}.
e Hinge Loss:
;- HAF(X)} = {1 — AF(X)}s
e Deviance Loss: ({A, f(X)} =
log[1 + exp{—Af(X)}]

92 / 175

“%Y Kernel Logistic Regression

Deviance loss is from binomial distribution:

A, f(X)} =log[l + exp{—Af(X)}]

binomial log-likelihood

Estimates the logit

Pr(A = +1|X)

Pr(A=—1|X)

Replace (1 — Af) with log(1 + e~4f), the binomial deviance.
Similar classification performance as the SVM.

log

Provide estimates of class probabilities.

Natural generalization to the multi-class case.

93 / 175

=
>
)

(%2}

>
o
|
X

SVM - Radial Kernel in Feature Space

LR - Radial Kernel in Feature Space

Training Error: 0.160

Test Error:

0.218

0.210

Bayes Error:

Training Error: 0.150 <

Test Error:

0.221

0.210

Bayes Error:

94 / 175

e SVM can be viewed as regularized fitting with a particular loss
function: hinge loss.

e The hinge loss allows for compression in terms of basis functions,
from n to some fraction of n.

o Regularized logistic regression gives very similar fit, using binomial
deviance as the loss.

e KLR does not have compression properties but it provides probability
estimation.

95 / 175

“%Y Curse of Dimensionality

True function quadratic in x; to xg.

Noise features x5 to xjg included.

SVMs can suffer in high dimensions.
Sparse SVM such as L; SVM can be used.

Test Error (SE)
Method No noise feature 6 noise feature
SVM/poly 1 0.423 (0.006) 0.466 (0.008)
SVM/poly 2 0.081 (0.016) 0.172 (0.015)
SVM/poly 5 0.212 (0.008) 0.393 (0.004)
SVM/poly 10 | 0.265 (0.011) 0.438 (0.006)

96 / 175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

Robust SVMs

97 / 175

Ltt, Robust SVM

e Hinge loss can be sensitive to outliers
e Truncated hinge loss
e Why not 0-1 loss?

98 / 175

“%Y Robust Learning

* Robust Learning: Reduce the loss for outliers (Wu and Liu, JASA

2007).
e We approximate /{Af(X) < 0} by the following -loss:

Ps(X) = P5(X) — ¥I(X)
= (20)71(0 = X)+ — (20) "M (=0 — X).

e Challenge: the loss function is not a convex anymore.

99 / 175

“%Y DC Decomposition

(a) 0-1 loss (0) W3 loss
o o
~ ~
o o
g - g -
S S
o o
- o
T T
T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
(b) s loss (d) y§ loss
o o
~ ~ 4
o o
g - g -
S S
o o
- o
T T
T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4

100 / 175

e, DC Algorithm

1. Initialize ©g.
2. Repeat ©¢41 = argming (Juex(©) + (UL, (0:),© — ©4))
until convergence of ©;.

e The algorithm converges in finite steps (Liu et al., JCGS, 2005).
e Choice of initial values: Use the original classifiers without truncation.
e The set of SVs is a only a SUBSET of the original one!

101 / 175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

ITR.SVM

102 / 175

“%Y Classification and Loss Function

Roughly speaking, A good classifier has smaller errors (we will discuss
regularization later).

D, = argminn 1E:I{A # D(Xi)} .

DeR

If we compare our ITR objective function as below,

. Y;
— argminn!
Do = argminn™) Ay A # DX

103 / 175

D, = argminn~ 1: (AY‘X)/{A 7 D(Xi)}-

DeR

v

n
Y. A
D =arminn_1g—' AL (XD} + S
° DgeR i=1 p(Ai|Xi) { (i) 2H HHK

104 / 175

e, | TR.SVM Algorithm

Algorithm 1 ITR.SVM

1: Compute @ by solving the following convex problem,

maximize —%aTHa + lTa
. 0<a<n,
subject to { aTA —0,

where theﬂ, 1, and A™ are defined in previous slides.
2: Compute 8i,i =1,...,n,

B = @A, Vi=1,...,n.
3: Computer Bo using,
Vai :0<aj<n = A{Bo+ ZBJK(X:',XJ)} =1
j=1

4: return Bsyy = {30,31, . -,Bn}-

105 / 175

e, | TR.SVM.DC

Algorithm 2 ITR.SVM.DC

1: Set initial value g0 = Bsym which is computed from IOWL-SVM (Algorithm 1).
2: repeat
.) ! !
30 compute 1) = 1[ar {80 + o0y B KX X))} <).
4. Compute @ by solving the following convex problem,
17 T
max ——a Ha+4681l a
@ 2
- <as<n-—mn,

s-t. { alA* = 0.
5: Compute E,(H'l),

Buy AT, Yi=1,---,n

6: Compute ﬁ Hl

n
S(1+1
Vaji—m <ap<mi—m, = A{Bo+3 B UKXG, X)) = 6.
=1

7 wuntil /0D — D=0

106 / 175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

R Hands On Examples

107 / 175

“%Y To be completed ...

e write down data generation model to generate training data sets.
e write down a Rcpp package for students to install and try.

e generate the results.

108 / 175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

Multicategory Angle Based Classifier and ITR.ABC

109 / 175

“%Y From Binary to Multicategory

Require novel techniques.
Label: {—1,+1} — {1,2,..., k}.
k-class

o Construct decision function vector f = (f1,...,fx). (k=2 only one f)
o Classifier: argmax;_; _, f;(X). (k =2 sign(f)).

Sum-to-zero constraint Z}‘Zl fi(X)=0.

,,,,,

110 / 175

“%Y lllustration

Class 1

fl>max(f2,f3) . .

f3>max(f1,f2)

X

f2>max(f1,3)

Class 2 Class 3

X1

Find f = (f1, 2, f3) and use argmax; f;(X) to do classification. -

‘%Y Existing Formulations

e There are many existing formulations and ad hoc approaches.
e One versus the rest or one versus the other.

e Vapnik (1998), Weston and Watkins (1999), Bredensteiner and
Bennett (1999), Guermeur (2002)

HF(X), AL =) 11— (fa—)]+
J#A
e Crammer and Singer (2001), Liu and Shen (2006)

VIF(X), A = [1 = (fa — max f)]+

e Multicategory SVM (Lee et al., 2014) and reinforced multicategory
hinge loss (Liu and Yuan, JCGS, 2011)

e Many formulations are either not always Fisher consistent or
computational inefficiency.

112 / 175

e, Multicategory Angle-Based Classification (ABC)

e A simplex based classification structure
e Advantages of ABC (Zhang and Liu, Biometrika, 2014)
o General structure: binary — multicategory
o Clear geometric interpretation
o Free of sum-to-zero constraint = faster computational speed
Theoretical advantages
Numerically competitive

113 / 175

e, k-Regular Polyhedron in a R~ Euclidean Space

A simplex W with k vertices {W4,---, Wi} in a (k—1)-dimensional space,

W — k=17 j=1
’ —(1+ k) {(k =123y + {k/ (k= D)} Pea, 2<) <k,

where 1; is a vector of 1 with length equal to i, and e; is a vector in RK~1
such that its every element is 0, except the ith element is 1.
Properties:

e The centre of W is at the origin.
e Each W, has Euclidean norm 1.
e The angles between any two directions Z(W;, W;), Vi # j are equal.

e Every vector in RX~! generate k different angles with respect to
{Wi,---, Wi}, and all these angles are in [0,].

114 / 175

e, |\ustration of {W;} When k = 2,3, 4

Remark: When k =3, {W;,i = 1,2,3} are the vertices of an equilateral
triangle, and when k = 4, {W;,i = 1,2,3,4} are the vertices of a regular
tetrahedron.

115 / 175

“%Y Angle Based Classifier

o Let W, represent class ;.
e Our method is to map x to f(x) € Rk—1.

e A is the class spaces as A = {1,2,---, k}, and a; € A which is the
class membership of subject i.

e We predict 3 to be the class whose corresponding angle is the

~

smallest, i.e. @ = argmin; Z/(W,, f), where /(-,-) denotes the angle
between two vectors.

¢ Minimizing the angle is equivalent to maximize (f(x;), W,,).

116 / 175

“%Y Angle Based Classifier lllustration

e k=2 Wy=1and W, = —1.
e k = 3 (equilateral triangle

),
W= (J5) We = (B7 07) e = (54 27)
o k =4 (regular tetrahedro)

T
2 A e (Y

“%Y Angle Based Classifier

With ¢ a convex monotone decreasing function, we have our angle based
classifier as,

mlnlmlze ZZ{ (xi), Wa,)} + AJ(F). (5)

Bample (=2 |
For a binary case, i.e. k =2, (f(x;), W,,) = af(x;),
e When {(-) is a deviance loss, ¢(z) = log{1 + exp(—z)}, equation (5)
is a logistic regression.
e When £(-) is a hinge loss, ¢(z) = (1 — z)4, equation (5) is the
support vector machine.

118 / 175

“%Y Fisher Consistency

Let 7*(-) be a classifier, and a function g(-,-) is a map g{f*(x), i} from
x € X and i € Ato R. The classification of x is a = arg maxy; g{f*(x), i}.
In our angle based classifier, g{f*(x), i} = (f*(x), W;).

Definition (Fisher consistency)

A classifier f*(-) is called Fisher's consistence if it satisfies that, Vx,

argmaxPr(A=i|X =x) = argmaxg{f*(x),/}.
Vi vj

Theorem (Fisher consistency for ABC)

The angle-based classifier from is Fisher consistency if { is a convex, the
derivative {' exists and ¢'(x) < 0, Vx.

119 / 175

e, |TR.ABC

Original objective function,

_ N~ Y
D, = angg;?lnn ,Z (A|X)I{A # D(Xi)}.

ITR.ABC objective function,

mlnlmlze Z Pr(A \X) (F(xi), Wa) } + AJ(F).

Theorem (Fisher consistency for ITR.ABC)

A classifier f*(-) is called Fisher’s consistence if it satisfies that, Vx,

argmax(f*(x), W;) = argmaxE(Y|A=j,x)
vj vj

ITR.ABC is Fisher consistency if { is a convex, the derivative {' exists and
?'(x) < 0,Vx.

.
120 / 175

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

ITR.Survival

121 /175

“%Y lllustration Data: Survival Outcome with Censoring

Table 10: An illustration dataset: with censoring. Y = TAC and A = [(T < C).

ID Y A|Trt | X3 Xo X3
1 |15 1 1 F 26 738
2 110 O 2 M 28 8.2
3123 1 3 M 31 89
4 108 0] 2 F 35 94
5117 1 1 M 22 73

When some survival times are censored, based on these data, how we can
learn a treatment assignment rule that, if followed by the entire population
of certain patients, would lead to the best outcome on average.

122 / 175

Because,
E(TIA, X)=E [E{
we have,

L(D)

S0 P72

— A X
SC(Y|A7X)’ ’ }’

'/{A#D(X)}T]
=/{/()(7'?’7;<()><)}
) E(T|A, X)
/{A#D(X)}AY] |

LP(AIX)Sc(YIA, X)

123 / 175

‘%Y Intuitive motivations

What if my model is wrong ...

We often assume independent and noninformative censoring in
analyzing survival outcomes (e.g. Cox model).

Therefore, censoring event time and survival event time can be
modeled separately.

When event times or censoring times are rare, we may not be very
confident to model both event time and censoring time right.

It will be great that my method is right, if | can get at least one
model is correct although | am not sure which one is correct.

Let us use notations with superscript m to denote a proposed model
(which may not be the true model).

Now we propose our doubly robust estimator as ...

124 / 175

‘%Y Doubly Robust Estimator

Lm(D) 2 E ([%+/E"’(T|T> £ A, X)

dN¢(t) dSZ(t|A, X) 1 1 {A # D(X)}
{se"(t\A,x>*’(th)senc(tm,xv}] P(AX))

(7)

Theorem (Doubly Robust)

We have L™ (D) = L(D), if one of the following two condition holds,
® SZ(t|A, X) = Sc(t|A, X),
® E™(T|T >t,AX)=E(T|T > t,AX).

125 / 175

"‘%Y ITR.Survival

Original objective function,
T
D, = inn 1y ——__J{A #D
o argmin n IZ (A |X) { 7£ ()}

DeR

ITR.ABC objective function,

L 1< T;
mlnlfrél}_ZG ; ; W€{<f(xl)? Wai>} + AJ(f)

Definition (ITR.Survival)

s 1y

A .Y
L™(f) = = S /EmTT t, A;, X;
() n;([sg(m,xiﬁ (TIT > £, A,)

de(t) dSE(t1A7 X)) || LL{F0s). Way))
{W +I1(Yi > 1) ng(ﬂAl_,Xl_)z H p(AIX)) + AJ(F)

126 / 175

“%Y Fisher's Consistency for ITR.Survival

Theorem (Fisher consistency for ITR.Survival)

A classifier f*(-) is called Fisher's consistence if it satisfies that, ¥x,

argmax(f*(x), W;) = argmaxE(T|A=j,x)
Vj vj

ITR.Survival is Fisher consistency if { is a convex, the derivative {' exists
and 0'(x) < 0, Vx.

127 / 175

O Reinforcement Learning and Multi-Stage Decision Making

128 / 175

O Reinforcement Learning and Multi-Stage Decision Making

Exact Solution Methods
Finite Markov Decision Processes
Planning by Dynamic Programming
Model-Free Prediction
Monte-Carlo Learning
Temporal-Difference Learning
Eligibility Traces and TD(\) Learning
Model-Free Control
On-Policy Monte-Carlo Control
On-Policy Temporal-Difference Learning
Off-Policy Learning: Q-Learning
Approximate Solution Methods
Value Approximation
Policy Gradient
Actor-Critic Methods

129 / 175

“%Y Classes of Machine Learning Algorithms

¢ Unsupervised learning: data driven (e.g. clustering).

e Supervised learning: task driven (e.g. classification).

130 / 175

“%Y Classes of Machine Learning Algorithms

¢ Unsupervised learning: data driven (e.g. clustering).
e Supervised learning: task driven (e.g. classification).
e Reinforcement learning.

it is close to mammal learning.

our agent has a goal to achieve.

our agent becomes smarter and smarter from experience interacting
with environment.

examples include: self driven-car, AlphaGo, a humanoid walking robot.

130 / 175

2, THE Artificial Intelligence Framework

| Observations !

| Actions |

Figure 4: The agent-environment interaction in reinforcement learning.

131 / 175

“%7 Example Demo

132 / 175

“%Y A Closer Look

A tuple formulation for reinforcement learning: < S, A, P, R,y >.
e S is a countable set of states.
e A is a countable set of actions.
e P is a state transition probability matrix.
e R is a reward function.
e ~ is a discount factor.

Examples: Atari games, patients’ journey, closed loop control system.

133 / 175

2, THE Artificial Intelligence Framework

State, S;y1 (| Reward, R:i1
L

Observations !

{ Action, A; I

Figure 5: The agent-environment interaction in reinforcement learning.

134 / 175

&2, \Ne Can Solve the Problem for You!

If you can formulate your research question into our tuple form,
<S,A,P,R,v >, we have tools to solve it for you!

135 / 175

O Reinforcement Learning and Multi-Stage Decision Making
Exact Solution Methods

136 / 175

O Reinforcement Learning and Multi-Stage Decision Making

Exact Solution Methods
Finite Markov Decision Processes

137 / 175

e A policy 7 is a mapping from each state s € S, and action, a € A(s)
to the probability m(a|s) of taking action a when in state s.

138 / 175

e A policy 7 is a mapping from each state s € S, and action, a € A(s)
to the probability m(a|s) of taking action a when in state s.

e Value function vx(s) = Ex [} peo V¥ Ret144|Se = 5] .

138 / 175

e A policy 7 is a mapping from each state s € S, and action, a € A(s)
to the probability m(a|s) of taking action a when in state s.

e Value function vx(s) = Ex [} peo V¥ Ret144|Se = 5] .

e Action-value function for policy T,
dr(s,a) = Ex [Ziozo 'Vth+l+k|St =5, At = 3] .

138 / 175

A policy 7 is a mapping from each state s € S, and action, a € A(s)
to the probability m(a|s) of taking action a when in state s.

Value function vx(s) = Ex [Ype o V¥ Ret144|Se = 5] .

Action-value function for policy m,
dr(s,a) = Ex [Ziozo 'Vth+l+k|St =5, At = 3] .
7w > 7 iff vp(s) > vp(s),Vs € S.

138 / 175

A policy 7 is a mapping from each state s € S, and action, a € A(s)
to the probability m(a|s) of taking action a when in state s.

Value function vx(s) = Ex [Ype o V¥ Ret144|Se = 5] .

Action-value function for policy m,

gr(s,a) = Ex [Y5eo vV Res14k|Se = s, Ac = a] .

7w > 7 iff vp(s) > vp(s),Vs € S.

Optimal state-value function vi(s) = max, v.(s),Vs € S, and optimal
action-value function g.(s, a) = max, g=(s, a),Vs € S,Va € A(s).

138 / 175

“%Y Bellman Equations

Bellman optimality equation,

vi(s) = max, . (s,a)
- Er |Rey1+ kR Si=s,Ar =
arenj();) t+1 ’Y;)’)’ t+k+2|92t = S, At a]
= max E[Res1+ yvu(St41)|S: = s, Ar = 4]
acA(s)
= aemjé)Zp(s rls, a)[r + yvi(s")].
Bellman optimality equation for g,
g«(s,a) = E [Rm +ymax qu(Se+1,3)|Se = 5, Ar = a]
a

= Z p(sl7 I’|S, a)[r + 7y max q*(sl7 al)]'
a/

s'r

139 / 175

“%Y Prediction and Control

e Prediction: evaluate the future.
e given a policy.

e Control: optimise the future
o find the best policy.

140 / 175

‘%Y Planning and Learning

A model predicts what the environment will do next, P predicts the next
state, Pr(S¢41|S: = s, Ar = a), and R predicts the next (immediate)
reward, E(Ry1|St = s, A = a).
e Planning:
» a model of the environment is known.
o planning by dynamic programming.
o prediction: iterative policy evaluation.
control: policy iteration and value iteration.

e Learning:

o the environment is initially unknown.

o the agent interacts with the environment.

o model-free prediction: Monte-Carlo learning, TD learning, TD(\).
model-free control: MC, SARSA, Q-learning, SARSA(M).

141 / 175

“%Y On and Off-Policy Learning

e On-policy learning
o "“learn on the job".
o learn about policy 7 from experience sampled from 7.
o example: SARSA and SARSA(A).

o Off-policy learning
o "“look over someone's shoulder”.
o learn about policy 7 from experience sampled from p.
o example: Q-learning.

142 / 175

“%Y Off-Policy Learning

e Evaluate target policy m(als) to compute v,(s) or gx(s, a)

e While following behavior policy u(als)

{517A15R27“'a57_} ~ U

143 / 175

“%Y Off-Policy Learning

e Evaluate target policy m(als) to compute v,(s) or gx(s, a)

e While following behavior policy u(als)

{SlaAlaR27“'a5T} ~ U

e Why is this important?
o learn from observing humans or other agents.
o learn about multiple policies while following one policy.
o learn about optimal policy while following exploratory policy.
o re-use experience generated from old policies w1, w2, -+, Tr—1.

143 / 175

“%Y Highlight in this section

Planning by Dynamic Programming: Solve a known MDP.
Model free prediction: estimate the value function of an unknown MDP.

Model free control: optimise the value function of an unknown MDP.

144 / 175

“%Y Policy Evaluation

Algorithm 3 lterative policy evaluation

Input: 7 < policy to be evaluated
Initialize: V < an arbitrary state-value function
repeat
A<+0
for each s € S do
v+ V(s)
V(s) ¢ 52, m(als) S, pls's rls. a)lr + 7 V()]
A +— max(A, |v — V(s)])
end for
until A < ¢ (a small positive number)
Output: V =~ v,

145 / 175

“%Y Policy Improvement Theorem

Theorem (Policy Improvement Theorem)

Let m and 7’ be any pair of deterministic policies, we have,

gr{s,m(s)} > va(s),Vs €S = vu(s) > vi(s),Vs € S.

Proof:
ve(s) < gn{s,7'(s)}
= Ev{Ret1 +7va(St41)|S: = s}
< Ev [Rey1 + 792 {Sts1, 7' (Se41) } St = 5]
= Ev{Res1+YRes2 + 7V Va(Se42)|Se = s}
< Ev {Rep1 + YRz + 7’ Res + VP Reja + -+ S = s}

= VF/(S).

146 / 175

“%Y Policy Iteration

E : . I .
Let — to denote policy evaluation, and — to denote policy
improvement. We have,

E I E I E I E
) — Vg —> M1 —> Vigy —> T2 —> +++ — Ty — V.

Remark: one drawback to policy iteration is that each of its iteration
involves policy evaluation, which may itself be a protracted iterative
computation requiring multiple sweeps through the state set.

147 / 175

“%Y Policy Iteration

Algorithm 4 Policy iteration

Initialization: V(s) € R and 7 (s) € A(s) arbitrarily for all s € S
Initialize an array V(s) = 0,Vs € S
repeat
Policy Evaluation
repeat
A+ 0
for each s € S do
v < V(s)
V(s) 30, n(als) S, ol rls, a)lr + Y V(S")]
A« max(A, |v — V(s)])
end for
until A < e (a small positive number)
Policy Improvement
Policy-stable < true
for each s € S do
a «+ m(s)
m(s) < argmax, > . p(s’, rls, a)[r + yV(s')]
if a # m(s) then Policy-stable < false
end if
end for
until Policy-stable
Output: V and 7

Remark: This algorithm has a subtle bug, in that it may never terminate if the policy continually

switches between two or more polices that are equally good. The bug can be fixed by adding

additional flags, but it makes the pseudo code so ugly that it is not worth it. ;
148 / 175

‘%Y Value Iteration

Value iteration combines the policy improvement and truncated policy
evaluation steps:

Viktr1(s) = max E{Ri11 + yvk(St+1)|St = s, Ar = a}
a
_ / /
= m;XZp(S,rls,a){r+7w<(5)}-
s',r

In fact, the policy evaluation step of policy iteration can be truncated in
several ways without losing the convergence guarantees of policy iteration.
The above is a special case that policy evaluation is stopped just after one
sweep (one backup of each state).

149 / 175

“%Y Value Iteration

Algorithm 5 Value iteration

Initialize an array V(s) =0,Vs € S
repeat
A<+0
for each s € S do
v+ V(s)
V(s) < maxs > g, p(s's rls, a){r + vV (s')}
A+ max(A, |v — V(s)|)
end for
until A < ¢ (a small positive number)
Output: a deterministic policy 7, such that,

n(s) = argmax Z p(s’, rls, a){r + yvi(s')}.

s'r

150 / 175

“%Y Monte-Carlo Policy Evaluation for v,

Goal: learn v, from episodes of experience under policy T,

51)A17R27"'7RT75T ~ .

Recall that the return is the total discounted reward:

G: = Reyi+ R+ 4+ 'Rr

Recall that the value function is the expected return:

ve(s) = En(GelS: = s).

Monte-Carlo policy evaluation uses empirical mean return instead of
expected return

151 / 175

“%Y Incremental Mean

To save memory, the mean can be calculated more efficiently. The mean

W1, b2, - -+ of a sequence Y1, Yo, - --

Hn

can be computed incrementally,

152 / 175

‘%Y Monte-Carlo Method for Evaluation v,

Algorithm 6 Monte-Carlo method for estimating v,

Input: 7 < policy to be evaluated
Initialize: V < an arbitrary state-value function
Generate N (a large number) episodes of experience from
for each state s € S do
for N(s) < N do
N(s) «+ N(s)+1
G; is calculated for the first (or every) visit of s
V(s) < V() + yg{Ge — V(s)}
(Or V(s) < V(s) + a{G: — V(s)} i.e. to forget old episodes)
end for
end for
Output: v, = V

153 / 175

“%Y Temporal-Difference Learning

MC update: V(S;) + V(S;) + a{ G, — V(5:)}

TD(0) update: V/(S;) < V(S;) + a{Rei1 +7V(S5e41) — V(Se)}
Rit1 + 7V/(St+1) is called the TD target

0t = Rey1 +vV(St+1) — V(St) is called the TD error

154 / 175

‘%Y Temporal-Difference Learning to Evaluate v,

Algorithm 7 Tabular TD(0) for evaluating v,

Input: 7 < policy to be evaluated
Initialize: V < an arbitrary state-value function
Generate N (a large number) episodes of experience from 7
for each episode do
Initialize S
for each step of episode do
A < action given by 7 for S
Take action A, observe R, S’
V(S) « V(S)+ a{R+~yV(S) — V(S)}
S+ 5
end for
end for
Output: v, =~ V

155 / 175

e, TD(\)

e Consider the following n-step returns:
n=1 TD(0) GM =

= Rep1 +7V(Se41)
n=2 G() =

= Ret1 + YRe2 + 72 V(Se42)

n=o00 MC Gt(oo) =

Res1+ YRy + ¥ Repz+ -+ 'Ry
e n-step TD learning

V(S) « V(S)+a{G"” — V(S)}
e TD(A) (forward view),

G = 1-nY ate”
=1

V(S) < V(St)+a{Gl = V(S)}
e TD(\) forward-view is easy to understand but difficult to compute

156 / 175

e, Eligibility Trace and Backward View of TD())

E:(s) is called eligibility trace, and it can be used for the update as below,

Eo(S) =0
Ei(s) = ~AE—i(s)+1(Se=s)
0 = Rey1 +7V(St41) — V(S)

V(s) <« V(s)+ ad:E(s)

Theorem (Backward-view TD(\))

The sum of offline updates is identical for forward-view and backward-view
TD()),

T

;
D adE(s) = Y oG} — V(S)I(S: =)
t=1

t=1

v

157 / 175

A) to Evaluate v,

Algorithm 8 On-line tabular TD(\) evaluating v,

Input: 7 < policy to be evaluated
Initialize: V < an arbitrary state-value function (set O for terminal state)
Generate N (a large number) episodes of experience from 7
for each episode do
Initialize E(s) =0,Vs € S
Initialize S
for each step of episode do
A < action given by 7 for S
Take action A, observe R, S’
§+ R+~V(S)—V(S)
E(S)«+ E(S)+1
for s € S do
V(S) < V(S) + adE(s)
E(s) + yA\E(s)
end for
S« S
end for
end for
Output: v = V

158 / 175

‘%Y Monte Carlo Control

Without a model, state values alone are not sufficient. One must explicitly
estimate the value of each action in order for the values to be useful in
suggesting a policy. Thus, one of primary goals for Monte Carlo methods
is to estimate g,.

E . . I .
Let — to denote policy evaluation, and — to denote policy
improvement. We have,

E I E l E / E
T —>Qng —> M1 —> Qny —> T2 —> =+ — Ty — (.

To maintain exploration, i.e. visit every state-action pairs, we can use
o Exploring starts: every pair has a nonzero probability of being selected
as the start.
e The e-greedy policy: m(a|s) = €/|A(s)| for all non-greedy actions, and
m(als) =1 — e+ ¢/|A(s)| for the greedy action.

Improvement is guaranteed by policy improvement theorem.
159 / 175

‘%Y Monte Carlo Control with Exploratory Starts

Algorithm 9 Monte Carlo control with exploratory starts

Initialize: Q(s, a) «+ arbitrary, 7(s) + arbitrary,Vs € S,a € A(s).
repeat
Choose Sy € S and Ag € A(Sp) s.t. all pairs have probability > 0.
Generate an episode starting from Sy, Ap, following .
for each pair s, a appearing in the episode do
N(s,a) «+ N(s,a)+1
G; is calculated for the first (or every) occurrence of s, a
Q(s,a) + Q(s,a) + m{Gt —V(s,a)}
or Q(s,a) + Q(s,a) + a{G: — Q(s,a)}
end for
for each s in the episode do
7(s) < argmax, Q(s, a)
end for
until Converge
Output: g, + Q

160 / 175

“%Y Monte Carlo Control with e-soft Policies

Algorithm 10 Monte Carlo control with e-Soft policies

Initialize: Q(s, a) < arbitrary, 7w(s) < arbitrary,Vs € S, a € A(s).
repeat
Choose Sp € S and Ag € A(Sp) s.t. all pairs have probability > 0.
Generate an episode starting from Sy, A, following .
for each pair s, a appearing in the episode do
N(s,a) < N(s,a) +1
G; is calculated for the first (or every) occurrence of s, a
Q(s,a) + Q(s,a) + ﬁ{Gr — Q(s,a)}
or Q(s,a) + Q(s,a) + a{G: — Q(s,a)}
end for
for each s in the episode do
A* «— argmax, Q(s, a)
for each a € A(s) do
1—e+¢/|A(s)| ifa=A*
m(als) < { e/|A(s)] if a £ A*
end for
end for
until Converge
Output: g. + Q

161 / 175

‘%Y SARSA: On-Policy Temporal-Difference Control

Algorithm 11 SARSA: on-policy TD control

Initialize: Q(s,a) <« arbitrary, 7(s) <+ arbitrary,Vs € S,a € A(s) and
Q(ST,) =0.
repeat(for each episode)
Initialize S
Choose A from S using policy derived from Q, e.g. e-greedy
repeat(for each step of episode)
Take action A, observe R and S’
Choose A’ from S’ using policy derived from Q, e.g. e-greedy
Q(S. A) Q(S, A) + alR +1Q(S", A') - Q(S, A)}
S« S and A« A
until S is terminal
until Converge
Output: g, < Q

162 / 175

e, SARSA()) Algorithm

Algorithm 12 SARSA()) control

Initialize: Q(s, a) < arbitrary, 7(s) < arbitrary,Vs € S,a € A(s) and Q(sr,) =0.
repeat(for each episode)
Initialize S
Choose A from S using policy derived from Q, e.g. e-greedy
repeat(for each step of episode)
Take action A, observe R and S’
Choose A’ from S’ using policy derived from Q, e.g. e-greedy
§+— R+vQ(S,A) — Q(S,A)
E(S,A) «+ E(S,A)+1
for all s € S,a € A(s) do
Q(s,a) + Q(s,a) + adE(s, a)
E(s,a) < y\E(s,a)
end for
S+ S and A A
until S is terminal
until Converge
Output: g. «— Q

163 / 175

“%Y Importance Sampling for Off-Policy Learning

Estimate the expectation of a different distribution,

Ex-plf(X)] = / F(x)dP

S ACEST

- el

Application: a single importance sampling correction,

7(A¢|St)

{Rex1 + 7V (Sev1)} — V(St)])

where p is behavior policy and 7 is target policy.

164 / 175

* Now we consider off-policy learning of action-values Q(s, a)
e No important sampling is required

e Next action is chosen using behavior policy A¢11 ~ pu(:|St)
e But we consider alternative successor action A’ ~ 7(-|S;)

e And update Q(S;, A¢) towards value of alternative action
Q(St? At) <~ Q(St7 At) + a{RH-l + VQ(SH-l: A/) - Q(Sta Af)}

e A special case is to allow both behavior and target policy to improve

e The target policy 7 is greedy w.r.t. Q(s, a),
7(St+1) = argmax Q(S¢41,a)
a/

e The behavior policy p is e.g. e-greedy w.r.t. Q(s,a)

165 / 175

‘%Y Q-Learning Algorithm for Off-Policy Control

Algorithm 13 Q-Learning

Initialize: Q(s, a) < arbitrary, m(s) < arbitrary,Vs € S,a € A(s) and
Q(ST,) =0.
repeat(for each episode)
Initialize S
repeat(for each step of episode)
Choose A from S using policy derived from Q, e.g. e-greedy
Take action A, observe R and S’
Q(S,A) + Q(S,A) + a{R +ymax, Q(S',a) — Q(S,A)}
S« 5
until S is terminal
until Converge
Output: g, + Q

166 / 175

O Reinforcement Learning and Multi-Stage Decision Making

Approximate Solution Methods

167 / 175

“%Y Large Scale Reinforcement Learning

Reinforcement learning can be used for solving large scale problem, for
example:

e Gomoku (five stones): 10° states.
o Computer Go game (Weiqi): 10170 states.
e Helicopter: continuous state space.

How can we scale up the model-free methods for prediction and control?

168 / 175

“%Y Value Function Approximation

The objective function is defined as the Mean Squared Value Error, or
MSVE:

MSVE(0) =) d(s) {va(s) — V(s,0)},

seS

where d(s) is the fraction of times spent in s under the target police 7
which is often referred to as the on-policy distribution.
Parameter updates:

0 « 0+alve(S)—7(S,0)}V(S,0).

169 / 175

“%Y Incremental Prediction and Control Algorithms

e Have assumed true value function v(s) given by supervisor.

e But in RL there is no supervisor, only rewards
e In practice, we substitute a target for v(s):
e For MC, the target is the return G;,

A — a{G—V(5:,0)}VV(S:,6).
o for TD(0), the target is the TD target Ri11 + YV(St+1,6),
A0 < a{Ret1 +yV(Se41,0) — V(S 0)} VV(Se, 0).
o For TD()), the target is the A—return G2,
A — a{G} —V(S:,0)} VV(S:,0).

e For control problems, approximate the action-value value by

~

Q(S.A,0) ~ Q(S. A).

170 / 175

“%Y Value-Based and Policy-Based RL

e Value Based

o Learn value function

o implicity policy (e.g. e—greedy)
e Policy Based

¢ No value function

e Learn policy
e Actor-Critic

o learn value value function

o learn policy

171 / 175

“%Y Policy Gradient Methods

e Model policy as:
7T(3|$,9) = PI’(At = a|5t = S,Ht = 6)

e For some performance measure n(f) with respect to the policy
parameters 0,

0 <« 0+ aVr(h).
e For example, the performance measurement can be,

n(0) = vry(S)-

e Policy gradient theorem,
Vn(0) = Y di(s)) ae(s,a)Ven(als,6).
S a

172 / 175

“%Y Reducing Variance Using a Critic

e Monte-Carlo policy gradient still has high variance

e We use a critic to estimate the action value function,

Q(s,a,w) = Qnp(s,a).

e Actor-critic algorithms maintain two sets of parameters

o Critic: update action-value function parameter w
o Actor: update policy parameters 6, in direction suggested by critic

173 / 175

@ Precision Medicine

® Individualized Treatment Recommendation Framework

© Support Vector Machines, Angel Based Classifiers, and Outcome
Weighted Learning in Reproducing Kernel Hilbert Spaces

O Reinforcement Learning and Multi-Stage Decision Making

174 / 175

Thank You!!

	Precision Medicine
	Individualized Treatment Recommendation Framework
	Support Vector Machines, Angel Based Classifiers, and Outcome Weighted Learning in Reproducing Kernel Hilbert Spaces
	Minimal Background on Convex Optimization
	Maximum Margin Classifer
	Reproducing Kernel Hilbert Space
	SVM and Function Estimation
	Robust SVMs
	ITR.SVM
	R Hands On Examples
	Multicategory Angle Based Classifier and ITR.ABC
	ITR.Survival

	Reinforcement Learning and Multi-Stage Decision Making
	Exact Solution Methods
	Approximate Solution Methods

