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Artificial Neural Networks

I Artificial neural networks (ANN) are machine learning
methods inspired by how neurons work in the brain

I ANNs are based on a collection of connected units or
nodes called artificial neurons

I ANNs are mathematical functions of varying complexity
that map a set of input values to output values

I ANNs are flexible models that can be used with many
different types of input and output values

I By connecting the artificial neurons in different ways
ANNs have been adapted to a wide variety of tasks
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Artificial Neural Networks
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Deep Learning

I Deep learning is a class of methods based on artificial
neural networks

I The “deep” in deep learning refers to the number of
hidden layers in an ANN

I A larger number of hidden layers allows deep neural
networks to produce extremely intricate functions of its
inputs

I Deep learning models can be simultaneously sensitive to
minute details, but insensitive to large irrelevant changes
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Feature Engineering

I Pattern-recognition and machine-learning systems have
historically relied on carefully engineered features to
extract useful representations from the raw data

I Engineered features are common in many applications
I Example: BMI = (weight in kg)/(height in m)2

I In 2013, Andrew Ng said:
Coming up with features is difficult, time-consuming,
requires expert knowledge. “Applied machine learn-
ing” is basically feature engineering.

I Deep learning essentially automates the feature
engineering process
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Representation learning

I Representation learning is
a set of methods that
allow ML algorithms to
automatically discover
representations of the data
that make detection and
classification easier

I Deep learning methods
develop multiple levels of
representation by
compositing several simple
non-linear transformations

Source: Goodfellow et al, 2016
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Representation learning
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ANN Origins — Perceptrons

I In 1958 Frank Rosenblatt described a binary classifier
called the perceptron algorithm

I Given a d-dimensional vector of covariates xi , the class of
the observation is predicted according to the function

f (x) =

{
1 if

∑d
i=1 wixi + b > 0,

0 otherwise

where w is a vector of real-valued weights

I Perceptrons are an early form of linear classification

I ANNs are sometimes referred to as multi-layer perceptrons
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Activation Functions

I Each layer in an ANN is composed of a linear combination
of the node values from the previous layer

I Applying a non-linear activation function to the linear
combinations allows successive layers to learn increasingly
complex features

I While selecting a model, it is common to test many
different activation functions and find that several perform
comparably

I There are some situations where the choice of activation
functions can greatly impact the performance of ANNs
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Activation Functions

I Several activation functions have been published, but it is
likely that most remain unpublished

I Some of the most common activation functions are:

Logistic g(x) =
1

1 + e−x

TanH g(x) =
ex − e−x

ex + e−x

ReLU g(x) =

{
0 if x ≤ 0

x if x > 0
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Architecture Design

I A key design consideration for neural networks is
determining the architecture

I Architecture refers to the overall structure of the network
I How many layers
I How many units in each layer
I How should these units be connected to each other
I Which activation functions to use

I Many ANNs use a chain based architecture
I The first layer is given by

h(1) = g (1)
(

W(1)T x + b(1)
)

I Subsequent layers are given by

h(j) = g (j)
(

W(j)Th(j−1) + b(1)
)
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Output Units

I ANNs can be used for a variety of different learning tasks
by changing the output units

I Let h be the features from the final hidden layer
I Linear Units for Continuous Output Distributions

I The output units produces a vector ŷ = WTh + b
I Linear output layers are often used to produce the mean of a

conditional Gaussian distribution:

p(y | x) = N (y; ŷ, I)

I Sigmoid Units for Bernoulli Output Distributions

ŷ =
exp{wTh + b}

1 + exp{wTh + b}
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Output Units, cont.

I Softmax Units for Multinoulli Output Distributions
I A linear layer predicts unnormalized log (relative) probabilities

z = WTh + b

where zi = logP(y = i | x)
I The softmax function can normalize z to obtain the desired ŷ

softmax(z) =
exp{zi}∑
j exp{zj}

I There are many other output units that can return
images, sound, video, etc.
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Training via Backpropagation

I Multi-layer architectures can be trained by gradient
descent

I If the nodes are relatively smooth functions of the inputs,
the gradients can be calculated using the backpropagation
procedure

I For a given loss function we can determine how the
weights in the final layer need to change to lower the loss

I Repeated application of the chain rule allows us to
determine how weights in previous layers need to change

I Some activation functions are not differentiable at all
points (e.g. ReLU), but they can still be used with
gradient-based learning algorithms at all input points.
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Regularization

I DL models typically have a large number of parameters,
sometimes more parameters than training examples

I Regularization methods are required to prevent overfitting

I L1 and L2 norms can be applied to the weights for each
node, but this is uncommon in DL

I Ensembles of neural networks with different model
configurations are known to reduce overfitting
I It is impractical to have an ensemble of multiple large neural

networks
I A single model can be used to simulate having a large number

of different network architectures by randomly dropping out
nodes during training

I Dropout is a computationally efficient and remarkably effective
method to approximate an ensemble approach
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Regularization

I One of the most common regularization methods used for
ANNs is early stopping

I The training error almost always decreases, but validation
error tends to increases with excessive training

I A model with small validation error can be found buy
stopping the training process early
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Adversarial Examples

I Adversarial examples are samples of input data which are
designed/selected to cause a machine learning classifier to
misclassify it

I Adversarial examples can be used while training to make a
DL model more robust
I Samples with noise added can make the predictions less

sensitive to small differences
I Exposing a model to samples known to lie close to the decision

boundary can improve performance

I Adversarial examples have important implications for the
safety of certain applications (e.g. self driving cars)

23 / 134



Adversarial examples

I By adding a imperceptible amount of noise, the
classification of the image can be changed
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Adversarial examples

These examples are likely close to the decision boundary

Mop or Puli Muffin or Chihuahua
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Convolutional Neural Networks

I Convolutional Neural Networks (CNNs) are designed to
process data that come in the form of multiple arrays

I CNNs are used in many applications such as: image and
video recognition, recommender systems, image
classification, medical image analysis, and natural
language processing

I The few layers of a typical CNN is composed of two types
of layers
I Convolutional layers
I Pooling layers
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Convolution

I A convolution is an operation on two functions of a
real-valued argument

I Convolutions are used to look at localized areas of an
array

s(t) =

∫
x(a)w(t − a) da

I The convolution operation is typically denoted with an
asterisk

s(t) = (x ∗ w)(t)
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Convolution

I Convolutions are often used over more than one axis at a
time

I For a d-dimensional input, convolutions can be calculated
with a d-dimensional kernel K

I For an m × n image as input, we can write the
convolution as

S(i , j) = (X ∗ K )(i , j) =
∑
m

∑
n

X (m, n)K (i −m, j − n)

I Discrete convolution can be viewed as multiplication by a
matrix, where the matrix has several entries constrained
to be equal
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Convolution Layer

Source: Goodfellow et al, 2016
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Local Connectivity

Source: Goodfellow et al, 2016

I Unlike other ANNs, CNNs
have layers that are not fully
connected

I Convolutional layers have
local connections

I For example, an input image
might have thousands or
millions of pixels, but
meaningful features usually
occupy only tens or hundreds
of pixels
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Parameter Sharing

I In a convolutional neural net, each member of the kernel
is used at every position of the input

I The parameter sharing used by the convolution operation
means that rather than learning a separate set of
parameters for every location, we learn only one set

I Parameter sharing causes a layer to have a property called
equivariance to translation
I Features can be identified regardless of where they occur in an

image

I Both local connectivity and parameter sharing can greatly
reduce the number of parameters needed compared to a
similarly sized traditional neural network
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Pooling

I A pooling function replaces the output of the net at a
certain location with a summary statistic of the nearby
outputs
I Example: Max pooling operation reports the maximum output

within a rectangular neighborhood

I Pooling over spatial regions can help to make the
representation approximately invariant to small
translations of the input

I The feature generation process can learn which
transformations to become invariant to by pooling over
the outputs of a range of parameterized convolutions
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Pooling
I Example: All three filters are intended to detect a hand

written 5

I Each filter attempts to match a slightly different
orientation of the 5

Source: Goodfellow et al, 2016
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Example of CNN Architecture
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Recurrent Neural Networks

I Recurrent neural networks (RNNs) are a family of neural
networks for processing sequential data

I RNNs process an input sequence one element at a time,
maintaining in their hidden units a ‘state vector’ that
contains information about the history of the sequence

I Most RNNs can process sequences of variable length, and
can scale to much longer sequences than would be
practical for networks without sequence-based
specialization
I Both of these qualities are largely due to parameter sharing
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Unfolding Computational Graphs
I A computational graph is a way to formalize the structure

of a set of computations
I Consider a dynamical system where the state at time t is

h(t). The system depends on a function f , parameters θ,
and is driven by an external signal x(t)

h(t+1) = f (h(t), x (t); θ)

= f (f (. . . f (h(1), x (1); θ), . . . , x (t−1); θ), x (t); θ)

I This system can be represented using the graphical model

Source: Goodfellow et al, 2016
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Unfolding Computational Graphs

I RNNs can be described as a computational graph that has
a recurrent structure

I A recurrent computational graph can be unfolded to a
computational graph with a repetitive structure

I Complex models can be succinctly represented with a
recurrent graph

I The unfolded graph provides an explicit description of
which computations to perform
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Recurrent Neural Networks

I RNNs learn a single shared model and apply the same set
of computations at each time step

I A shared model allows generalization to sequence lengths
that did not appear in the training set, and needs far
fewer training examples than would be required without
parameter sharing

I RNNs can output a result at each time step (stock market
predictions) or read an entire sequence before outputting
a result (meaning of a sentence)
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Bidirectional RNNs

I RNNs need not have a causal structure. In many
applications we want to output a prediction that may
depend on the whole input sequence

I For example, in natural language processing, the meaning
of a word might require the context of nearby words in
both directions

I Bidirectional RNNs are composed of two RNNs: one that
moves forward through time from the start of the
sequence, and another that moves backward through time
from the end of the sequence
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The Challenge of Long-Term Dependencies

I Long-Term dependencies are difficult to model because
gradients propagated over many stages tend to either
vanish or explode

I There have been attempts to avoid the problem by
staying in a region of the parameter space where the
gradients do not vanish or explode

I Unfortunately, in order to store memories in a way that is
robust to small perturbations, the RNN must enter a
region of parameter space where gradients vanish

I Even if the parameters are such that the recurrent network
is stable, long-term interactions have exponentially smaller
weights compared to short-term interactions
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Skip Connections and Leaky Units

I Skip connections obtain coarse time scales by adding
direct connections from variables in the distant past to
variables in the present
I In ordinary recurrent networks, a recurrent connection goes

from a unit at time t to a unit at time t + 1, but longer
connections are possible (t + d)

I For τ time steps, gradients now diminish exponentially as a
function of τ/d rather than τ

I Leaky Units have linear self-connections that “remember”
past values
I Leaky units accumulate a running average µ(t) of some value

v (t) by applying the update µ(t) = αµ(t−1) + (1− α)v (t)

I When α is near one, the leaky unit remembers information
about the past for a long time, and when α is near zero,
information about the past is rapidly discarded
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Long Short-Term Memory Nodes

I Leaky units use self-connections to accumulate
information, but there is no mechanism to “forget” old
information even when it would be beneficial to do so

I Long Short-Term Memory units have several “gates” to
control how the unit behaves at each time step
I Input gate: Controls when the node gets updated
I Forget gate: Controls how long information is retained
I output gate: Controls when the node has an output value

I Each gate has parameters controlling its behavior allowing
the model to learn when each behavior is beneficial
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Recursive Neural Networks

I Recursive neural networks are
a generalization of recurrent
networks, with a
computational graph which is
structured as a tree

I For a sequence of the same
length, the number of
compositions of nonlinear
operations is smaller for
recursive neural networks than
RNNs which might help deal
with long-term dependencies Source: Goodfellow et al, 2016
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Generative Modeling

I Generative modeling is an unsupervised learning task

I A generative model is used to generate new examples that
could have been drawn from the original data distribution

I Generative adversarial networks (GANs) are a way of
training a generative model by framing it as a supervised
learning problem with two sub-models
I A generative network which learns to map from a latent space

to a data distribution of interest
I A discriminative network which distinguishes candidates

produced by the generator from the true data distribution
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Generative Adversarial Networks

I The generator model “learns”

the data distribution by

competing with the

discriminator model

I Both the generator and

discriminator models are

updated to improve their

performance

I Training continues until the

discriminator is consistently

“fooled” 50% of the time

Random
Input Vector

Generator
Model

Generated
Example

Real
Example

Discriminator
Model

Binary Classification
Real / Fake

Update
Model

Update
Model

45 / 134



GAN Progress

I GANs have made considerable progress in recent years

I Image generators can fool both discriminator networks
and human observers, which misclassify up to 40 percent
of generated images
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GAN Applications

I GANs are useful for their ability to represent
high-dimensional probability distributions

I There are many potential applications of GANs
I Generation of images, video, etc.
I Data augmentation
I Missing Data imputation
I Semi-supervised learning
I Reinforcement learning

I If carefully constructed, GANs can be used to learn more
about the underlying data distributions
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Motivation

I The gold standard for discovering causal relationships is
experiments

I Experiments can be prohibitively expensive, unethical, or
impossible, so there is a need for observational causal
discovery

I Causal generative neural networks (CGNNs) learn
functional causal models by fitting a generative neural
networks that minimizes the maximum mean discrepancy

I Using deep neural networks allows CGNNs to learn more
complex causal relationships than other approaches
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Functional Causal Models

I A functional causal model (FCM) on a vector of random
variables X = (X1,X2, . . . ,Xd) is a triplet C = (G, f , E),
where:
I G is a graph
I f characterizes the relationships between X ’s
I E is an error distribution

I FCMs can be represented by a set of equations

Xi ← fi(XPa(i ,G),Ei), Ei ∼ E , for i = 1, . . . , d

where XPa(i ;G) are the “parents” of Xi in graph G
I For notational simplicity Xi interchangeably denotes an

observed variable and a node in the graph G
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Functional Causal Models

Source: Goudet et al., 2018

I FCMs can be represented as a directed acyclic graph
(DAG) as in the example above

I There exists a direct causal relation from Xj to Xi iff there
exists a directed edge Xj to Xi in G
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Causal Generative Neural Networks

I Let X = (X1, . . . ,Xd) denote a set of continuous random
variables with joint distribution P

I If the joint density function associated with P is
continuous and strictly positive on a compact subset of
Rd and zero elsewhere, it can be shown that there is a
CGNN that approximates P with arbitrary accuracy

I Rather than use a discriminator model to evaluate the
generator, CGNNs train the generator to minimize the
maximum mean discrepancy (MMD) between the real and
generated data
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Maximum Mean Discrepancy

I MMD measures whether two distributions are the same

I Let F be a class of functions f : X → R and let p, q be
distributions

MMD(F , p, q) = sup
f ∈F

(Ex∼p[f (x)]− Ey∼q[f (y)])

I For samples X ∼ p of size m and Y ∼ q of size n then
the estimate of the MMD is

M̂MD(F ,X ,Y ) = sup
f ∈F

(
1

m

m∑
i=1

f (Xi)−
1

n

n∑
i=1

f (Yi)

)
I Under certain conditions MMD(F , p, q) = 0 iff p = q
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Scoring Metric

I The maximum over F is made tractable by assuming that
F is the unit ball of a RKHS with kernel k

I For an estimated distribution P̂ we want to know if it is
close to the true distribution P

I The estimated MMD between the n-sample observational

data D, and an n-sample D̂ from P̂ is

M̂MDk(D, D̂) =
1

n2

n∑
i,j=1

k(xi , xj) +
1

n2

n∑
i,j=1

k(x̂i , x̂j)−
2

n2

n∑
i,j=1

k(xi , x̂j)

I The estimated FCM Ĉ is trained by maximizing

S(Ĝ,D) = −M̂MDk(D, D̂)− λ|Ĝ|
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Searching Causal Graphs

I An exhaustive explorations of all DAGs with d variables
using brute force search is infeasible for moderate d

I To solve this issue the authors assume that the skeleton of
the graph G is obtainable from domain knowledge

I The CGNN follows a greedy procedure to find G and fi :
I Orient each Xi − Xj as Xi → Xj or Xj → Xi by selecting the

2-variable CGNN with the best score
I Follow paths from a random set of nodes until all nodes are

reached and no cycles are present
I For a number of iterations, reverse the edge that leads to the

maximum improvement of the score S(G,D) over a d-variable
CGNN, without creating a cycle

I At the end of this process, we evaluate a confidence score for
any edge Xi → Xj as

VXi→Xj = S(G,D)− S(G − {Xi → Xj},D)
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Dealing with Hidden Confounders

I The search method relies on the no unmeasured
confounders assumption

I If this assumption is violated, we know that each edge
Xi − Xj in the skeleton is due to one out of three
possibilities
I Xi → Xj

I Xi ← Xj

I Xi ← Ei,j → Xj for some unobserved variable Ei,j

I The search method can be modified to allow for
confounders as follows:
I Each equation in the FCM is extended to:

Xi ← fi (XPa(i,G),Ei,Ne(i,S),Ei )

where Ne(i ,S) is the set of indicies of variables adjacent to Xi

in the skeleton
I In this case, regularization by λ|Ĝ| promotes simple graphs
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Discovering v-structures

I Consider the random variables (A,B ,C ) with skeleton
A− B − C , four causal structures are possible
I A→ B → C
I A← B ← C
I A← B → C
I A→ B ← C

I All four structures are Markov equivalent, and therefore
indistinguishable from each other using statistics alone

I Previous methods have had difficulty identifying the
correct structure

I CGNNs can accurately discriminate between the
v-structures using the MMD criteria
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Conclusion

I CGNNs are a new framework to learn functional causal
models from observational data

I CGNNs combine the power of deep learning and the
interpretability of causal models

I CGNNs are better able to identify the causal structure of
relationships compared to other methods

I There is still a need to characterize the sufficient
identifiability conditions for this approach
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Introduction

I Sequential decision problems arise in many application
areas
I Autonomous Vehicles
I Finance
I Logistics
I Robotics
I Healthcare

I Markov decision processes (MDPs) are the primary
mathematical model for sequential decision problems

I Almost any decision process can be made into an MDP

I Coercing a decision process into the MDP framework can
lead to high-dimensional system information that is
difficult to model
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Motivation

I High-dimensional, infinite horizon MDPs can often be
represented by low dimensional approximations

I Option 1: Create a finite discretization of the space and
treat the process as a finite MDP
I Can result in a significant loss of information
I Can be difficult to apply when the system state information is

continuous and high-dimensional

I Option 2: Construct a low-dimensional summary of the
underlying system states
I No guarantee low-dimensional summary contains salient

features needed for making good decisions

I Can we find a good low dimensional approximation?
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Setup and Notation

I The observed data are

{(S1
i ,A

1
i ,U

1
i , S

2
i , . . . ,A

T
i ,U

T
i , S

T+1
i )}

I T ∈ N - Observation time
I St ∈ Rpt - Summary of information until time t
I At ∈ A = {1, . . . ,K} - Decision made at time t
I U t = U t(St ,At ,St+1) - Quantifies momentary “goodness” of

current action / state transition

I We assume that U is bounded such that supt |U t | ≤ M

I The observed data has a time horizon T , but the method
should work for any time horizon

61 / 134



Markov and Homogeneous

I We assume that the process is Markov and homogeneous
in that

P
(
St+1 ∈ Gt+1

∣∣At ,St , . . . ,A1,S1
)

= P
(
St+1 ∈ Gt+1

∣∣At ,St
)
,

where Gt+1 ⊆ domSt+1, and the probability measure does
not depend on t

I These conditions may not be satisfied without some
modification
I For any process (S1,A1,S2 . . . ) we can define

S̃ = (St ,At−1, . . . ,St−mt ) where mt is chosen such that the
Markov property holds

I Augmenting the state with a variable for time, i.e. defining the
state at time t to be (S̃t , t), can ensure homogeneity
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Decision Strategy

I The decision strategy π : S 7→ A, makes decision π(st)
when presented with St = st at time t

I Let at = (a1, a2, . . . , at) and st = (s1, s2, . . . , st) be the
action and state histories at time t

I S∗t(at−1) is the potential state under trajectory at−1

I The potential state under decision strategy π is

S∗t(π) =
∑
at−1

S∗t(at−1)
t−1∏
v=1

1π{S∗v (av−1)}=av
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Value Function

I The potential utility under decision strategy π is

U∗t(π) = U
[
S∗t(π), π(S∗t(π)), S∗(t+1)(π)

]
I The discounted mean utility under π is

V (π) = E

{∑
t≥1

γt−1U∗t(π)

}

I For a class of decision strategies Π, the optimal decision
strategy πopt ∈ Π satisfies V (πopt) ≥ V (π) ∀ π ∈ Π

64 / 134



Sufficient Markov Decision Processes

I It can be difficult to construct a high-quality estimator of
πopt when the states St are high-dimensional

I For any map φ : S 7→ Rq, define St
φ = φ(St)

I φ induces a sufficient MDP for πopt if (A
t
, S

t+1

φ ,U
t
)

contains all relevant information about πopt

I Given a policy πφ : domS t
φ 7→ A, the potential utility

under πφ is

U∗tφ (πφ) =
∑

at

U
[
S∗t(at−1), at ,S∗(t+1)(at)

] t∏
v=1

1πφ{S∗v
φ (av−1)}=av
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Sufficient Markov Decision Processes

I Let Π ⊆ AS denote a class of decision strategies defined
on S and Πφ ⊆ ASφ a class of decision strategies defined
on Sφ = domSt

φ ⊆ Rq

I The pair (φ,Πφ) induces a sufficient MDP for πopt within
Π if the following conditions hold for all t ∈ N:
I The process (A

t
,S

t+1

φ ,U
t
) is Markov and homogeneous

I There exists πopt ∈ argmaxπ∈Π V (π) which can be written as
πopt = πopt

φ ◦ φ, where

πopt
φ ∈ argmax

πφ∈Πφ

E

∑
t≥1

γt−1U∗tφ (πφ)


I It suffices to store only the process {(S

t+1

φ,i ,A
t

i ,U
t

i )}ni=1
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Conditional Independence

I Verifiable conditions for checking that (φ,Πφ) induces a
sufficient MDP require a few assumptions
I Consistency: St = S∗t(A

t−1
)

I Positivity: P
(
At = at

∣∣∣St
= st ,A

t−1
= at−1

)
> 0

I Sequential ignorability: {S∗t(at−1)}t≥1 ⊥ At |St
,A

t−1

I Define Yt+1 = {U t , (St+1)T}T for all t ∈ N

I Let (S1,A1,U1, S2, . . . ) be an MDP that satisfies the
above assumptions. Suppose that there exists φ : S 7→ Rq

such that
Yt+1 ⊥ St |St

φ,A
t

then, (φ,Πφ) induces a sufficient MDP for πopt within Π
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Conditional Independence

I Let (S1,A1,U1, S2, . . . ) be an MDP that satisfies the
previous assumptions. Suppose that there exists
φ : S 7→ Rq such that at least one of the following
conditions hold:

(i) {Yt+1 − E(Yt+1|St
φ,A

t)} ⊥ St |At

(ii) {St − E(St |St
φ)} ⊥ (Yt+1,St

φ)|At

then Yt+1 ⊥ St |St
φ,A

t

I This result can be used to verify the conditional
independence condition using Brownian distance
covariance
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Variable Screening

I Conditional independence may be too strong of an
assumption in the presence of certain noise variables

I For example, let {Bt}t≥1 denote a homogeneous Markov
process independent of (S1,A1,U1, S2, . . . )

I Yt+1 need not be conditionally independent of
{(St)T , (Bt)T}T given St , but πopt does not depend on
{Bt}t≥1

I For any map φ : S 7→ Rq, let Yt+1
φ = {U t , (St+1

φ )T}T

I If Yt+1
φ ⊥ St |St

φ,A
t then, (φ,Πφ) induces a sufficient

MDP for πopt within Π
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Alternating Deep Neural Networks

I Let S = Rp and consider summary functions φ : Rp 7→ Rq

that are representable as multi-layer neural networks

I To construct a data-driven summary function φ, we
require a model for the regression of Yt+1 on St

φ and At

I This predictive model can also be representable as a
multi-layer neural network

I The model can be visualized as two connected multi-layer
neural networks
I One that composes the feature map φ
I One that models the regression of Yt+1 on St

φ and At
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Alternating Deep Neural Networks

I The First M1 layers of of the NN determine the feature
map φ ≡ LM1(s, θ1)

I The following M2 layers fit the regression model
LM2(s, θ1, θ2)
I Separate regression models are fit for each action a

I There are several tuning parameters including the number
of layers, width of the layers, and the dimension of the
feature map φ : S 7→ Rq

I The dimension q is chosen to be the lowest dimension for
which the Brownian distance covariance test of
independence fails to reject at a pre-specified error level

71 / 134



Alternating Deep Neural Networks
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Conclusions

I Choosing a parsimonious representation of a decision
process that fits the MDP model is non-trivial

I The deep neural networks can model complex and
nonlinear structure in the high-dimensional state space

I The method proposed above can effectively reduce the
dimension of the state space without adversely impacting
the performance

I Possible future work includes

I Online estimation of the feature map

I States with complex data structures (e.g. images and text)
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Introduction

I Many conditions have multiple treatments available

I Combination therapies are becoming increasingly common

I Multiclass individualized treatment rule (ITR) estimation
methods are not scalable with large numbers of treatment
options

I Existing algorithms may not be adequate for finding ITRs
with combination therapies
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Motivation

I Patients with type 2 diabetes often receive multiple
medications because a single treatment may be
insufficient to effectively control the blood glucose level

I Medications exerting their effects through different
mechanisms can increase effectiveness of the therapy

I Sulfonylurea (SU) increases insulin release from β-cells in the
pancreas

I DDP4 increases incretin level, which inhibits glucagon release

I Effects may be additive or weakly interacting because
DDP4 and SU function through different biological
pathways
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Multiclass vs Multilabel

I Combination therapies often allow patients to be assigned
to any combination of K possible treatments

I Multiclass classification problems would have 2K classes

I Dimension increases exponentially with the number of
treatments

I Proposed strategies to simplify computation have many
drawbacks

I Multilabel classification considers K binary treatment
choices (yes/no for each drug)

I Reduces computational cost of estimation

I Requires treatment effects to be additive or small interactions
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Hamming Loss

I Let A = (A1, . . . ,AK ) ∈ A represent a vector of length K ,
where A = {−1, 1}K

I Accordingly, the decision rule is
D(X ) = (D1(X ), . . . ,DK (X )) ∈ {−1, 1}K

I A commonly used loss function for multilabel classification
is the Hamming loss

1

K

K∑
k=1

I{Ak 6= Dk(X )}

I The Hamming loss quantifies the proportion of mislabeled
treatments
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Hamming Loss

I Like the 0-1 loss, the Hamming loss is discontinuous and
difficult to optimize

I To aid computation we will use a convex surrogate loss
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OWL with Multilabel Classification

I Consider the following loss function for a given decision
rule D(X):

L(D) =
1

n

n∑
i=1

Ri

πAi

1

K

K∑
k=1

I{Ak 6= Dk(X )}

where πAi
= Pr(A = a|X )

I For multiclass classification, this loss reduces to the
outcome weighted 0-1 loss

I In observational studies πAi
can be difficult to estimate

when K is large. Possible approaches:
I P(A = a|X ) = P(A = a)
I P(A = a|X ) =

∏K
k=1 P(Ak = ak |X )
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Decision Rule with Deep Learning

I Any suitable classifier can fit into the proposed framework

I We consider neural networks because of their advantages
in shared subspace and scalable computation

I Let D̂(X ) = (D̂1(X ), . . . , D̂K (X )) be the estimated
decision rule

I Using the hinge loss, we can formulate the optimization
problem as

min
θ

1

n

n∑
i=1

Ri

πAi

1

K

K∑
k=1

[1− AikD̂k(Xi)]+

where θ represents all parameters in the NN
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Overfitting

I Due to strong representative power of DNN, overfitting
can be an issue

I The authors recommend a regularization strategy with
penalization by solving the following problem

min
θ

1

n

n∑
i=1

Ri

πAi

1

K

K∑
k=1

[1− AikD̂k(Xi)]+ + λf (θ)

I Let L be the number of layers and W` be the weight
matrix from the `th layer
I Ridge penalty: f (θ) =

∑L
`=1 ‖W`‖2

F (Frobenius norm)
I Lasso penalty: f (θ) =

∑L
`=1 ‖W`‖1

I Other methods to prevent overfitting can also be used
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Fisher Consistency of Hamming loss

I Define the risk of the outcome weighted 0-1 loss as

R(D) = E
[
R

πA
I{A 6= D(X )}

]
I And the risk of the outcome weighted Hamming loss as

RH(D) = E

[
R

πA

1

K

K∑
k=1

I{Ak 6= Dk(X )}

]

I Any decision rule D̃ such that RH(D̃) = infD{RH(D)}
also satisfies R(D̃) = infD{R(D)}

I Since the outcome weighted 0-1 loss is fisher consistent,
so is the outcome weighted Hamming loss
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Multilabel Consistency of the Surrogate Loss

I Define the risk of the surrogate outcome weighted
Hamming loss as

ΦH(D) = E

[
R

πA

1

K

K∑
k=1

φ (AkDk(X ))

]

where φ is a predefined convex function

I The surrogate loss is consistent with outcome weighted
Hamming loss if φ is one of the following

1. Exponential: φ(x) = e−x

2. Hinge: φ(x) = (1− x)+

3. Least squares: φ(x) = (1− x)2

4. Logisticregression: φ(x) = ln(1 + e−x)
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Conclusions

I Using multilabel classification can make finding ITRs for
combination therapies tractable

I The proposed Hamming loss does not account for strong
interactions among treatments which may limit its
applicability

I A generalization of the Hamming loss can handle
interactions, but the theoretical properties are unknown

I Possible extensions include multiple decision points and
estimating contrasts of treatment effects in combination
therapies
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Shared decision making

I So far we have focused on DTRs that tailor treatments to
individual patient characteristics.

I Patient characteristics may include clinical information as
well as patient preferences.

I Recall that an optimal DTR maximizes the mean of a
pre-specified clinical outcome if it is applied to all patients
in a population of interest.

I While this definition of optimality is mathematically
convenient, it does not directly allow for shared decision
making where patient preferences are integrated into the
decision process.
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Why including patient preferences into DTR
construction is important

I Including patient preferences in treatment selection in a
mathematically rigorous way is important.

I First, it facilitates ‘patient-centered care’ in which
patients play a key role in decision making and the
evaluation of their own outcomes.

I Second, it offers a principled means for matching patient
preferences to an optimal treatment based on potentially
complex outcome profiles.
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Patient preference elicitation

I Eliciting patient preferences is not necessarily
straightforward.

I For example, it would be convenient if patients could
choose parameters indexing a composite outcome.
However, without specialized training for the patients, this
is not feasible.

I An alternative approach is to administer a questionnaire
populated with items that are accessible to a patient in a
domain context yet are informative about preferences in
the outcome space.

I Butler, Laber, Davis, and Kosorok (2018) incorporate this
latter approach to derive a preference-sensitive optimal
DTR for each patient. We will explore their proposed
methodology in detail.
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Setup and notation

I Observed data {Wi ,Xi ,Ai ,Yi ,Zi}ni=1 comprises n
independent and identically distributed tuples
(W,X,A,Y ,Z ) where

I W ∈ {0, 1}p denotes answers to items in a preference
questionnaire,

I X ∈ Rm denotes pre-treatment patient covariates,

I A ∈ {−1, 1} denotes the assigned treatment,

I Y ,Z ∈ R denote outcomes of interest, coded so that higher
values are better.

I A DTR is denoted by π : dom W × dom X→ dom A.

89 / 134



Optimal DTR

To define an optimal DTR,

I Assume that each individual in the pouplation has a latent
preference, H ∈ R, that indexes a utility function
U(y , z ; h).

I Assume that the utility function induces an ordering on
dom Y × dom Z so that a patient with preference H = h
would prefer outcomes (y , z) to (y ′, z ′) if
U(y , z ; h) ≥ U(y ′, z ′; h).
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Optimal DTR (cont.)

I Let Y ∗(a) and Z ∗(a) denote the potential outcomes
under treatments a ∈ {−1, 1} so that U{Y ∗(a),Z ∗(a)} is
the potential utility function under treatment a.

I Define the potential utility as

VU(π) = E
[ ∑

a∈{−1,1}

U{Y ∗(a),Z ∗(a);H}I (π(W,X) = a)

]
where the expectation is taken with respect to the joint
distribution of {X,W,H ,A,Y ∗(0),Y ∗(1),Z ∗(0),Z ∗(1)}.

I The optimal DTR, πopt
U satisfies

VU(πopt
U ) ≥ VU(π) for all π.
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Form of the utility

I Assume the utility has the form

U(y , z ; h) = Φ(h)y + {1− Φ(h)}z

where Φ(·) denotes the cumulative distribution function
for a standard normal random variable.

I Interpretation: A patient with preference h cares
Φ(h)/(1− Φ(h)) more about Y than Z .

I Linear utility is a common assumption in multiobjective
optimization, however the assumption of a constant gain
in utility per unit increase in outcome may not be
reasonable in some contexts.
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The optimal DTR for any rational utility can be
expressed as the optimal DTR for some linear utility

I A rational utility will always prefer a treatment that is
better on both outcomes to one that is worse on both
outcomes.

I Butler et al. (2018) prove that the DTR for any rational
utility may be expressed as the optimal DTR for some
linear utility function.

I To state this formally, define the following

RZ (w, x) = {Z∗(1)|W = w,X = x} − {Z∗(−1)|W = w,X = x}
RY (w, x) = {Y ∗(1)|W = w,X = x} − {Y ∗(−1)|W = w,X = x},
RU(w, x) = {U{Y ∗(1),Z∗(1);H}|W = w,X = x}

− {U{Y ∗(−1),Z∗(−1);H}|W = w,X = x}.

I Note, it can be shown that πopt
U (w, x) = sign{RU(w, x)}
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The optimal DTR for any rational utility is the
optimal DTR for some linear utility (formally)

Lemma (2.1)
Assume that max{RU(w, x)RZ (w, x),RU(w, x)RY (w, x)} > 0 for all
x, w. Then, there exists a real-valued random variable, H ′, such
that: (i) H ′ ⊥⊥ A, {Z ∗(a),Y ∗(a) : a ∈ {−1, 1}}|X,W; and (ii) the
DTR

πopt
CVX(x,w) = argmax

a∈{−1,1}
E [Φ(H ′)Y ∗(a) + {1− Φ(H ′)}Z∗(a)|X = x,W = w]

satisfies VU(πoptCVX) = VU(πoptU ).
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Identification

I The optimal DTR is defined in terms of potential
outcomes. To identify the model, we assume

C1 Causal consistency, (Y ,Z ) = {Y ∗(A),Z∗(A)},
C2 Positivity, there exists ε > 0 so that P(A = a|X,W) ≥ ε,
C3 Ignorability, [{Y ∗(a),Z∗(a)} : a ∈ {−1, 1}] ⊥⊥ A|X,W, and
C4 (A,Y ,Z ) ⊥⊥ H|X,W.

I C1, C2, and C3 are standard assumptions.

I C4 holds if the assumptions of Lemma 2.1 hold.

I C4 can be weakened to A ⊥⊥ H |X,W at the expense of
postulating a model for the conditional mean of Φ(H)Y
and Φ(H)Z given (X,W,Z ).
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Estimation strategy
I Under C1, C2, and C3, it can be shown that

πopt(x,w) = argmax
a∈{−1,1}

E[Φ(H)Y + {1− Φ(H)}Z |X = x,W = w,A = a]

which under C4 can be written as

πopt(x,w) = argmax
a∈{−1,1}

E [Φ(H)|X = x,W = w]E(Y |X = x,W = w,A = a)

+[1− E{Φ(H)|X = x,W = w}]E(Z |X = x,W = w,A = a)].

I This suggests a strategy for estimating πopt:
I Construct estimators for

QY (x,w, a) = E(Y |X = x,W = w,A = a) and
QZ (x,w, a) = E(Z |X = x,W = w,A = a)

I Postulate a latent preference model linking the unobservable
preference H with covariates X and preference questionnaire
items W and use this model to estimate
µH(x,w) = E{Φ(H)|X = x,W = w}.

I Plug in estimators to estimate πopt.
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Estimation of the Q functions

I To estimate QY and QZ , Butler et al. (2018) propose
linear working models of the form

QY (x,w, a;ψY ) = xᵀY ,0ψY ,0 + wᵀ
Y ,1ψY ,1 + axᵀY ,1ψY ,2 + awᵀ

Y ,1ψY ,3

QZ (x,w, a;ψZ ) = xᵀZ ,0ψZ ,0 + wᵀ
Z ,0ψZ ,1 + axᵀZ ,1ψZ ,2 + awᵀ

Z ,1ψZ ,3,

where x`,j and w`,j for ` = Y ,Z and j = 0, 1 are known
feature vectors from x and w and ψW and ψY are unknown
parameter vectors.

I Let ψ̂Y ,n = argminψY
Pn{Y − QY (X,W,A;ψY )}2 and

ψ̂Z ,n = argminψZ
Pn{Z − QZ (X,W,A;ψZ )}2.

I Construct estimators QY (x,w, a; ψ̂Y ) and QZ (x,w, a; ψ̂Z ) of
QY (x,w, a) and QZ (x,w, a), respectively.
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Specification of the latent preference model

I Assume that H ⊥⊥ X|W for ease of exposition. (Note that
X could be included in the latent patient preference
model.)

I Assume that the latent patient preferences are connected
to items on the questionnaire through a Rasch model of
the form

logit{P(Wj = 1|H = h)} = β0,j + β1,jh, j = 1, . . . , p

which is indexed by β = (β0,1, β1,1, . . . , β0,p, β1,p).

I Let β∗ denote the true parameter value. The EM
algorithm can be used to construct an estimator β̂n of β∗.
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Estimation of µH

I Given an estimator β̂n and a postulated marginal
distribution, ph for the latent preferences, the conditional
distribution of H given W = w is proportional to
p(w|h)ph(h).

I This conditional distribution can be approximated using
Metropolis Hastings.

I A computationally less burdensome approach is to apply a
method of moments type estimator:
I Let ĥ(w) denote the solution to∑p

j=1 β̂n,1,jexpit(β̂n,j,0 + β̂n,1,jh) =
∑p

j=1 β̂n,1,jwj .

I Subsequently let µ̂H,n(x,w) = Φ(ĥn(w)) denote our
estimator of µ(w, x).
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Estimation of πopt

With estimates of µH , QZ , and QY in hand, we can compute an
estimate of the optimal DTR,

π̂n(x,w) = argmax
a∈{−1,1}

[µ̂H,n(x,w)Q̂Y ,n(x,w, a)

+{1− µ̂H,n(x,w)}Q̂Z ,n(x,w, a)].
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Assumptions for the theoretical results

Let h∗(w) denote the solution to∑p
j=1 β

∗
1,jexpit(β∗j ,0 + β∗j ,1h) =

∑p
j=1 β

∗
j ,1wj . Assume the following

(A1) The number of items satisfies 3 ≤ pn = o(en).

(A2) The estimator ĥn(w) converges in probability to h∗(w),
pointwise for all w.

(A3) The estimators Q̂Y ,n(x,w, a) and Q̂Z ,n(x,w, a) converge in
probability to QY (x,w, a) and QZ (x,w, a) pointwise for
each x, w, and a.
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Theoretical results

The first theoretical result establishes consistency of the proposed
estimator for the optimal DTR as the sample size diverges but the
number of items remains fixed.

Theorem (Thm 2.2 in Butler et al. (2018))

Assume (A1) - (A3) and let the number of items, pn = p, be fixed.
Then VU(πopt)− VU(π̂n) converges to zero in probability as
n→∞.

The second theoretical result says that if the number of items is
allowed to diverge with the sample size then the estimated DTR
performs as well as an oracle that knows each patient’s individual
preference.

Theorem (Thm 2.3 in Butler et al. (2018))

Assume (A1) - (A3) and suppose pn →∞ as n→∞. Then
VU(π̂n)− VU(πoracle) converges to zero in probability as n→∞.
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Case Study: CATIE

I The Clinical Antipsychotic Trials of Intervention
Effectiveness (CATIE) schizophrenia trial was designed to
compare new antipsychotic drugs to conventional ones in
a randomized, controlled, double-blind, multi-phase trial.

I The trial targeted patients already being treated for
schizophrenia but who might benefit from a medicinal
change.

I Patients received antipsychotic treatments and were
offered psychosocial treatment with their families.
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First phase of CATIE

I The first phase of CATIE is suited for application of the
method proposed in Butler et al. (2018).

I Patients were randomized to one of 5 medications,
I 4 were atypical antipsychotics, and
I 1 was a conventional antipsychotic (perphenazine).

I For ease of exposition, we will dichotomize the treatments
into atypical antipsychotics and perphenazine.

I At baseline, patients answered a 10 question, binary
response assessment, which can be used to measure
patient preferences across two outcomes
I Efficacy using the Positive and Negative Syndromes Scale

(PANSS), and
I Side effect burden measured as the sum of side effect and

adverse event indicators.
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Patient preference questions
The patient preference information was collected using a 10
question Drug Attitude Inventory assessment. One question was
excluded from analysis.

Figure 1: Table 1 from Butler et al. (2018)
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Analysis
Tailoring covariates were selected based on clinical expertise and
prior analyses.

Figure 2: Table 2 from Butler et al. (2018)
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Analysis (cont.)

I By examining the coefficients for the Q-functions, we see
that the main effect of treatment has an opposite sign in
the two Q-functions as well as several interactions
involving treatment.

I This suggests a trade-off between the two outcomes that
must be made in choosing a treatment and that this trade
off varies across patient characteristics.
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Estimated optimal treatment allocation

While efficacy appears to favor atypical antipsychotics, side effect
burden tends to favor perphenazine. The composite outcome
occupies a middle ground between the two marginal outcomes.

Figure 3: Table 3 from Butler et al (2018)
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Percent agreement in treatment recommendations

This table shows the fraction of overlap between the proposed
estimated optimal DTR and the optimal DTR based only on
efficacy or side effect burden.

Figure 4: Table 4 in Butler et al. (2018)
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Discussion

I Butler et al. (2018) propose a strategy for balancing
multiple, possibly competing outcomes when estimating a
dynamic treatment regime.

I A few other methods for incorporating multiple outcomes
into precision medicine have been proposed for various
scenerios under various assumptions. However, the
literature in this area is relatively small.

I An interesting extension is the multi-decision setting. This
is a challenging extension as patient preferences may
change over time in response to treatment received and
interim outcome experiences.
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Introduction

I Almost all methods for estimating individualized treatment
rules have been designed to optimize a scalar outcome

I Clinical decision making often requires balancing
trade-offs between multiple outcomes

I Examples:

I Bipolar disorder treatments must manage both depression and
mania

I Antidepressants can prevent depressive episodes but may also
induce manic episodes

I Utility functions can be used to summarize multiple
outcomes as a single scalar
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Setup and Notation

I We will assume two outcomes, but the method can be
extended to more

I The available data are (Xi ,Ai ,Yi ,Zi), i = 1, . . . , n

I Xi ∈ X ⊆ Rp are patient covariates

I A ∈ A = {−1, 1} is a binary treatment

I Y and Z are two real-valued outcomes (higher is better)

I Let Y ∗(A) and Z ∗(A) be the potential outcomes under
treatment a

I We will need the standard causal assumptions

I Consistency: Y = Y ∗(A) and Z = Z∗(A)

I Positivity: Pr(A = a|X = x) ≥ c > 0

I Ignorability: {Y ∗(−1),Y ∗(1)} ⊥ A |X
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Optimal Treatments for Individual Outcomes

I Define QY (x, a) = E(Y |X = x,A = a)

QZ (x, a) = E(Z |X = x,A = a)

I Under the preceding assumptions we have

I dopt
Y (x) = argmaxa∈AQY (x, a)

I dopt
Z (x) = argmaxa∈AQZ (x, a)

I In general, dopt
Y (x) need not equal dopt

Z (x)

I If both Y and Z are clinically relevant, neither dopt
Y nor

dopt
Z may be acceptable
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Utility Functions

I Define the composite outcome U = u(Y ,Z ) for a utility
function, u
I u : R2 7→ R is the “goodness” of the outcome pair (y , z)
I u may be unknown and possibly depend on the covariates

I Define QU(x, a) = E(U |X = x,A = a)

I The optimal regime with respect to U satisfies

dopt
U (x) = argmax

a∈A
QU(x, a)

= argmax
a∈A

E[u{Y (a),Z (a)} | x]

I Utility functions which are convex combinations of
QY (x, a) and QZ (x, a) are identifiable under the preceding
assumptions
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Inverse Reinforcement Learning

I We assume that clinicians act with the goal of optimizing
each patient’s utility

I Inverse reinforcement learning uses decisions made by an
expert to construct a utility function

I We assume that the clinicians are approximately (i.e.,
imperfectly) assigning treatment according to dopt(x)
I There would be no need to estimate the optimal treatment

policy if the clinician were always able to correctly identify the
optimal treatment

I We assume that the probability of making the correct
treatment decision depends on individual patient
characteristics

Pr{A = dopt
U (X) |X = x} = expit(xTβ)

where β is an unknown parameter
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Fixed Utility

I We begin by assuming the utility function is constant
across patients

I Let the utility function be u(y , z ;ω) = ωy + (1− ω)z for
some ω ∈ [0, 1]

I The optimal ITR for a broad class of utility functions is
equivalent to the optimal ITR for a utility function of this
form (Butler 2018, Lemma 1)

I Define Qω(x, a) = ωQY (x, a) + (1− ω)Qz(x, a) and
dopt
ω (x) = argmaxa∈AQω(x, a)
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Fixed Utility, Cont.

I Let Q̂Y ,n and Q̂Z ,n be estimates based on regression
models fit to the observed data

I For a fixed value of ω, let

Q̂ω,n(x, a) = ωQ̂Y ,n(x, a) + (1− ω)Q̂Z ,n(x, a)

I Define d̂ω,n(X) = argmaxa∈A Q̂ω,n(x, a)

I The joint distribution of (X,A,Y ,Z ) is

f (X,A,Y ,Z ) = f (Y ,Z |X,A)f (A|X)f (X)

= f (Y ,Z |X,A)f (X)
exp[XTβ1{A = dopt

ω (X)}]
1 + exp(XTβ)
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Pseudo-likelihood Estimation of Utility Functions

I Assuming that f (Y ,Z |X,A) and f (X) do not depend on
ω or β, the likelihood for (ω, β) is

Ln(ω, β) ∝
n∏

i=1

exp[XTβ1{A = dopt
ω (X)}]

1 + exp(XTβ)

I Plugging in d̂ω,n(X) for dopt
ω (X) yields a pseudo-likelihood

I If we let ω̂n and β̂n denote the maximum
pseudo-likelihood estimators, an estimator of the utility
function is ûn(y , z) = ûn(y , z ; ω̂n) = ω̂ny + (1− ω̂n)z and

expit(XTβ̂n) estimates the probability that a patient would
be treated optimally
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Algorithm

I The pseudo-likelihood is non-smooth in ω, so standard
gradient-based optimization can’t be used

I For a given value of ω, it is straightforward to compute

the profile estimator β̂n(ω)

I Compute the profile pseudo-likelihood over a grid for ω
and select the value yielding the largest pseudo-likelihood

I Finding β̂n(ω) can be accomplished using logistic
regression
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Patient-specific Utility

I In some application domains outcome preferences can
vary widely across patients

I Schizophrenia

I Pain management

I etc.

I To accommodate this, we assume that the utility function
takes the form u(y , z ; x, ω) = ω(x)y + 1− ω(x)z where
ω : X 7→ [0, 1] is a smooth function

I e.g., Let ω(x ; θ) = expit(XTθ) where θ is an unknown
parameter

I Define Qθ(x, a) = ω(x; θ)QY (x, a) + (1− ω(x; θ))QZ (x, a)
and define dopt

θ (x) = argmaxa∈AQθ(x, a)
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Patient-specific Utility

I For Q̂Y ,n, Q̂Z ,n and a fixed value of θ, let

Q̂θ,n(x, a) = ω(x; θ)Q̂Y ,n(x, a) + (1− ω(x; θ))Q̂Z ,n(x, a)

and d̂opt
θ,n (x) = argmaxa∈A Q̂θ,n(x, a)

I We can compute the estimators (θ̂n, β̂n) by maximizing
the pseudo-likelihood

Ln(θ, β) ∝
n∏

i=1

exp[XTβ1{A = d̂θ,n(X)}]
1 + exp(XTβ)

I An estimator for the utility function is

ûn(y , z ; x) = ω(x; θ̂n)y + (1− ω(x; θ̂n))z

I An estimator for the optimal decision function is d̂θ̂n,n
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Algorithm

I As before, the pseudo-likelihood is non-smooth in θ

I It is again straightforward to compute the profile

pseudo-likelihood estimator β̂n(θ) for any θ ∈ Rp

I It is computationally infeasible to compute β̂n(θ) over a
grid for moderate p

I Instead we generate a random walk through the parameter
space using the Metropolis algorithm (see next slide)

I After generating a chain (θ1, . . . , θB), we select the θk

that leads to the largest value of L̃n(θk) as the maximum
pseudo-likelihood estimator
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Algorithm, Cont.

Algorithm 2: Pseudo-likelihood estimation of patient-dependent
utility function

1 Set a chain length, B, fix σ2 > 0, and initialize θ1 to a starting
value in Rp;

2 for b = 2, . . . ,B do
3 Generate e ∼ N(0, σ2I );

4 Set θ̃b+1 = θb + e;

5 Compute p = min{L̃n(θ̃b+1)/L̃n(θ̃b), 1};
6 Generate U ∼ U(0, 1); if U ≤ p, set θb+1 = θ̃b+1;

otherwise, set θb+1 = θb;

7 end
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Theoretical Results

I We assume that Pr{A = dopt(x)|X = x} = expit(xTβ0)

I The true utility is u(y , z ; x, θ0) = ω(X; θ0)y + {1− ω(X; θ0)}z
where ω(X; θ) has bounded continuous derivative on
compact sets

I dopt
θ0

(X) = dopt
θ (X) almost surely implies θ = θ0

I The main theoretical results rely on a number of
assumptions

I A rate of convergence for the estimated Q-functions

I Automatically satisfied if the Q-functions are estimated using
linear or generalized linear models

I Positive probability of patients with x values near the boundary
between where each treatment is optimal
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Asymptotic Inference

Theorem
Under regularity conditions, the pseudo-likelihood maximizers β̂n
and θ̂n satisfy

√
n

(
θ̂n − θ0

β̂n − β0

)
 

(
U

I−1
0 [ZA − k0(ZY ,ZZ ,U)]

)
=

(
U
B

)
,

where U = argminu β
T
0 k0(ZY ,ZZ , u), and ZY

ZZ

ZA

 ∼ N(0,Σ0).

A certain semiparametric bootstrap is also consistent in probability.
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Asymptotic Inference
Main technical tools:

I The Argmax theorem

I The following for the bootstrap:

Theorem

I Let H be compact with respect to a metric d and
F ⊂ C [H] be compact with respect to ‖ · ‖H

I For each f ∈ F , let u(f ) = argmaxu∈H f (u), where we
arbitrarily choose a value if nonunique

I Suppose also that there exists an F1 ⊂ F such that each
f ∈ F1 has a unique maximum

I Then

lim
δ↓0

sup
f ∈F1

sup
g∈F :‖f−g‖H<δ

d(u(f ), u(g)) = 0
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Parametric Bootstrap

Theorem

I Assume Σ̂n = Σ0 + oP(1)

I Let Z ∗ ∼ N(0, I r×r ) where r = p + q,

Z̃n = Σ̂nZ
∗ = (Z̃T

Y , Z̃
T
Z , Z̃

T
A )T

I Define Ũn = argminu∈Rd β̂T
n k̃n(Z̃Y , Z̃Z , u) and

B̃n = In(β̂n)−1{ZA − k̃n(Z̃Y , Z̃Z , Ũn)}
I Then (

Ũn

B̃n

)
P
 
Z∗

(
U
B

)
,

where U and B are as defined on slide 125
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Simulation Studies

I X = (X1, ...,X5)T ∼ N(0,Σ = 0.52I )

I Y = A(4X1 = 2X2 + 2) + εY
Z = A(2X1 − 4X2 − 2) + εZ
where εY ∼ εZ ∼ N(0, 0.52)

I Setting 1:
I Pr{A = dopt(x) |X = x} = ρ

I Setting 2:
I Pr{A = dopt(X)} = expit(0.5 + X1)

I Setting 3:
I Pr{A = dopt(X)} = expit(0.5 + X1)
I ω(X; θ) = expit(1− 0.5X1)
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Simulation Results

I Value results for simulations where utility (ω) and
probability of optimal treatment (ρ) are fixed

n ω ρ Optimal Estimated ω Y only Z only Standard of care

100 0.25 0.60 1.90 (0.07) 1.75 (0.29) 0.39 (0.12) 1.77 (0.07) 0.39 (0.23)
0.80 1.90 (0.07) 1.88 (0.07) 0.39 (0.12) 1.77 (0.07) 1.14 (0.21)

0.75 0.60 1.89 (0.07) 1.69 (0.40) 1.76 (0.08) 0.39 (0.12) 0.40 (0.23)
0.80 1.89 (0.07) 1.89 (0.07) 1.76 (0.08) 0.39 (0.12) 1.15 (0.21)

200 0.25 0.60 1.90 (0.07) 1.80 (0.25) 0.39 (0.11) 1.77 (0.07) 0.38 (0.17)
0.80 1.90 (0.07) 1.89 (0.06) 0.39 (0.11) 1.77 (0.07) 1.15 (0.15)

0.75 0.60 1.90 (0.07) 1.79 (0.26) 1.76 (0.07) 0.38 (0.11) 0.38 (0.17)
0.80 1.90 (0.07) 1.89 (0.06) 1.76 (0.07) 0.38 (0.11) 1.16 (0.15)

300 0.25 0.60 1.90 (0.07) 1.86 (0.13) 0.37 (0.11) 1.76 (0.08) 0.38 (0.13)
0.80 1.90 (0.07) 1.89 (0.07) 0.37 (0.11) 1.76 (0.08) 1.14 (0.12)

0.75 0.60 1.90 (0.06) 1.84 (0.19) 1.76 (0.08) 0.39 (0.11) 0.39 (0.13)
0.80 1.90 (0.06) 1.90 (0.07) 1.76 (0.08) 0.39 (0.11) 1.15 (0.12)

500 0.25 0.60 1.90 (0.06) 1.88 (0.08) 0.38 (0.11) 1.77 (0.07) 0.37 (0.11)
0.80 1.90 (0.06) 1.90 (0.06) 0.38 (0.11) 1.77 (0.07) 1.13 (0.09)

0.75 0.60 1.90 (0.07) 1.88 (0.08) 1.76 (0.08) 0.39 (0.11) 0.37 (0.10)
0.80 1.90 (0.07) 1.90 (0.07) 1.76 (0.08) 0.39 (0.11) 1.13 (0.09)
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Simulation Results

I Value results for simulations where utility (ω) is fixed and
probability of optimal treatment is variable

n ω Optimal Estimated ω Y only Z only SoC

100 0.25 1.90 (0.06) 1.72 (0.41) 0.40 (0.11) 1.76 (0.07) 0.33 (0.24)
0.75 1.90 (0.06) 1.76 (0.29) 1.76 (0.07) 0.38 (0.12) 0.58 (0.24)

200 0.25 1.90 (0.06) 1.84 (0.24) 0.38 (0.11) 1.75 (0.08) 0.32 (0.16)
0.75 1.90 (0.06) 1.84 (0.16) 1.76 (0.07) 0.38 (0.11) 0.57 (0.16)

300 0.25 1.89 (0.07) 1.88 (0.14) 0.38 (0.11) 1.77 (0.07) 0.32 (0.14)
0.75 1.90 (0.07) 1.87 (0.09) 1.76 (0.07) 0.39 (0.12) 0.56 (0.14)

500 0.25 1.90 (0.07) 1.90 (0.06) 0.38 (0.11) 1.77 (0.07) 0.33 (0.10)
0.75 1.90 (0.07) 1.89 (0.08) 1.76 (0.07) 0.39 (0.11) 0.57 (0.10)
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Simulation Results

I Value results for simulations where both utility and
probability of optimal treatment are variable

n Optimal Estimated ω Y only Z only Standard of care

100 1.74 (0.06) 1.53 (0.19) 1.59 (0.07) 0.44 (0.11) 0.51 (0.21)
200 1.73 (0.06) 1.61 (0.13) 1.59 (0.07) 0.44 (0.10) 0.51 (0.15)
300 1.74 (0.06) 1.64 (0.12) 1.59 (0.07) 0.44 (0.10) 0.50 (0.13)
500 1.74 (0.06) 1.68 (0.09) 1.59 (0.07) 0.43 (0.10) 0.50 (0.09)
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Misspecified Model for the Utility Function

I Let the true underlying utility function be
u(y , z ; bx , θ) = ωx; θ)y + {1− ω(x; θ)}z

I Where ω(x; θ) = expit(1 + x2
1 + xTθ0)

I Consider a misspecified model fit to estimate the utility
function containing only an intercept, X1,X2,X3, and X4

I i.e., one important covariate and a squared term are omitted
from the model for the utility function

n Optimal Correct Misspecified Standard of Care

100 1.86 (0.07) 1.61 (0.21) 1.64 (0.20) 0.59 (0.23)
200 1.85 (0.07) 1.68 (0.16) 1.69 (0.17) 0.57 (0.16)
300 1.86 (0.07) 1.72 (0.13) 1.74 (0.13) 0.57 (0.13)
500 1.86 (0.07) 1.77 (0.10) 1.76 (0.11) 0.58 (0.10)
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Analysis of STEP-BD SCP Data

I Included an observational study with 1437 patients having
bipolar disorder (Sachs et al, 2007, NEJM).

I Using the proposed method, we were able to estimate an
improved decision rule which led to a 7% improvement
(p-value < 0.0001).

I Both increased age and history of substance abuse were
important factors leading to lower recommended use of
antidepressants.

I If we selected the two outcomes to be depression and side
effect burden, we obtain an improvement of 9% (p-value
< 0.001).
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Conclusions

I We can estimate patient utilities if we assume that
clinicians make treatment decisions with the goal of
maximizing each patient’s utility

I Accounting for patient specific utilities can improve
outcomes over standard of care

I Early results suggest the method is robust to utility model
misspecificaion, but more research is needed

I The approach could be extended to multiple decision
times, more than two outcomes, and more than two
possible treatments

I A Bayesian approach could be developed to handle the
non-smooth pseudo-likelihood
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